Loading…

Geometric properties and sections for certain subclasses of harmonic mappings

Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) > | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | < r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ =...

Full description

Saved in:
Bibliographic Details
Published in:Monatshefte für Mathematik 2019-10, Vol.190 (2), p.353-387
Main Authors: Liu, Ming-Sheng, Yang, Li-Mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) > | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | < r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ = h ( k ) ( 0 ) = g ( k ) ( 0 ) = 0 and α ≥ 0 . In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G H k ( α ; 1 ) . Next, we derive the geometric properties of harmonic mappings in G H 1 ( α ; 1 ) . Then we study several properties of the sections of f ∈ G H k ( α ; 1 ) . Finally, we show that if f ∈ P H 0 ( α ) and F ∈ G H 1 ( β ; 1 ) , then the harmonic convolution f ∗ F is univalent and close-to-convex harmonic function in the unit disk for α ∈ [ 1 2 , 1 ) , β ≥ 0 .
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-018-1240-5