Loading…

Geometric properties and sections for certain subclasses of harmonic mappings

Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) > | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | < r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ =...

Full description

Saved in:
Bibliographic Details
Published in:Monatshefte für Mathematik 2019-10, Vol.190 (2), p.353-387
Main Authors: Liu, Ming-Sheng, Yang, Li-Mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63
cites cdi_FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63
container_end_page 387
container_issue 2
container_start_page 353
container_title Monatshefte für Mathematik
container_volume 190
creator Liu, Ming-Sheng
Yang, Li-Mei
description Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) > | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | < r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ = h ( k ) ( 0 ) = g ( k ) ( 0 ) = 0 and α ≥ 0 . In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G H k ( α ; 1 ) . Next, we derive the geometric properties of harmonic mappings in G H 1 ( α ; 1 ) . Then we study several properties of the sections of f ∈ G H k ( α ; 1 ) . Finally, we show that if f ∈ P H 0 ( α ) and F ∈ G H 1 ( β ; 1 ) , then the harmonic convolution f ∗ F is univalent and close-to-convex harmonic function in the unit disk for α ∈ [ 1 2 , 1 ) , β ≥ 0 .
doi_str_mv 10.1007/s00605-018-1240-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2291465371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2291465371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHNuxR1TxJRWxwGy5jl1SNXGw04F_j6sgMTHdcM_z3ukl5BrhFgGauwwgQVBARZFxoOKELJDXkgpQeEoWAExSzYQ4Jxc57wAAa6kX5PXJx95PqXPVmOLo09T5XNmhrbJ3UxeHXIWYKlcWthuqfNi4vc25MDFUnzb1cShqb8exG7b5kpwFu8_-6ncuycfjw_vqma7fnl5W92vqapQTDW3LNyCdr9ExzV2tmVccG6GaoEELZV1oVRuk4oyjdsoHARvVeq1QBSvrJbmZc8vPXwefJ7OLhzSUk4YxjVyKusFC4Uy5FHNOPpgxdb1N3wbBHFszc2umtGaOrRlRHDY7ubDD1qe_5P-lHxlXb-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291465371</pqid></control><display><type>article</type><title>Geometric properties and sections for certain subclasses of harmonic mappings</title><source>Springer Link</source><creator>Liu, Ming-Sheng ; Yang, Li-Mei</creator><creatorcontrib>Liu, Ming-Sheng ; Yang, Li-Mei</creatorcontrib><description>Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) &gt; | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | &lt; r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ = h ( k ) ( 0 ) = g ( k ) ( 0 ) = 0 and α ≥ 0 . In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G H k ( α ; 1 ) . Next, we derive the geometric properties of harmonic mappings in G H 1 ( α ; 1 ) . Then we study several properties of the sections of f ∈ G H k ( α ; 1 ) . Finally, we show that if f ∈ P H 0 ( α ) and F ∈ G H 1 ( β ; 1 ) , then the harmonic convolution f ∗ F is univalent and close-to-convex harmonic function in the unit disk for α ∈ [ 1 2 , 1 ) , β ≥ 0 .</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-018-1240-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Convolution ; Harmonic functions ; Mathematics ; Mathematics and Statistics ; Properties (attributes) ; Theorems</subject><ispartof>Monatshefte für Mathematik, 2019-10, Vol.190 (2), p.353-387</ispartof><rights>Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63</citedby><cites>FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63</cites><orcidid>0000-0002-2644-6997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Ming-Sheng</creatorcontrib><creatorcontrib>Yang, Li-Mei</creatorcontrib><title>Geometric properties and sections for certain subclasses of harmonic mappings</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) &gt; | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | &lt; r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ = h ( k ) ( 0 ) = g ( k ) ( 0 ) = 0 and α ≥ 0 . In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G H k ( α ; 1 ) . Next, we derive the geometric properties of harmonic mappings in G H 1 ( α ; 1 ) . Then we study several properties of the sections of f ∈ G H k ( α ; 1 ) . Finally, we show that if f ∈ P H 0 ( α ) and F ∈ G H 1 ( β ; 1 ) , then the harmonic convolution f ∗ F is univalent and close-to-convex harmonic function in the unit disk for α ∈ [ 1 2 , 1 ) , β ≥ 0 .</description><subject>Convolution</subject><subject>Harmonic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Properties (attributes)</subject><subject>Theorems</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHNuxR1TxJRWxwGy5jl1SNXGw04F_j6sgMTHdcM_z3ukl5BrhFgGauwwgQVBARZFxoOKELJDXkgpQeEoWAExSzYQ4Jxc57wAAa6kX5PXJx95PqXPVmOLo09T5XNmhrbJ3UxeHXIWYKlcWthuqfNi4vc25MDFUnzb1cShqb8exG7b5kpwFu8_-6ncuycfjw_vqma7fnl5W92vqapQTDW3LNyCdr9ExzV2tmVccG6GaoEELZV1oVRuk4oyjdsoHARvVeq1QBSvrJbmZc8vPXwefJ7OLhzSUk4YxjVyKusFC4Uy5FHNOPpgxdb1N3wbBHFszc2umtGaOrRlRHDY7ubDD1qe_5P-lHxlXb-U</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Liu, Ming-Sheng</creator><creator>Yang, Li-Mei</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2644-6997</orcidid></search><sort><creationdate>20191001</creationdate><title>Geometric properties and sections for certain subclasses of harmonic mappings</title><author>Liu, Ming-Sheng ; Yang, Li-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convolution</topic><topic>Harmonic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Properties (attributes)</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ming-Sheng</creatorcontrib><creatorcontrib>Yang, Li-Mei</creatorcontrib><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ming-Sheng</au><au>Yang, Li-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric properties and sections for certain subclasses of harmonic mappings</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>190</volume><issue>2</issue><spage>353</spage><epage>387</epage><pages>353-387</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>Let G H k ( α ; r ) denote the subclasses of normalized harmonic mappings f = h + g ¯ in the unit disk D satisfying the condition Re ( ( 1 - α ) h ( z ) z + α h ′ ( z ) ) &gt; | ( 1 - α ) g ( z ) z + α g ′ ( z ) | in | z | &lt; r , r ∈ ( 0 , 1 ] , where h ′ ( 0 ) = 1 , g ′ ( 0 ) = h ′ ′ ( 0 ) = ⋯ = h ( k ) ( 0 ) = g ( k ) ( 0 ) = 0 and α ≥ 0 . In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G H k ( α ; 1 ) . Next, we derive the geometric properties of harmonic mappings in G H 1 ( α ; 1 ) . Then we study several properties of the sections of f ∈ G H k ( α ; 1 ) . Finally, we show that if f ∈ P H 0 ( α ) and F ∈ G H 1 ( β ; 1 ) , then the harmonic convolution f ∗ F is univalent and close-to-convex harmonic function in the unit disk for α ∈ [ 1 2 , 1 ) , β ≥ 0 .</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-018-1240-5</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-2644-6997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2019-10, Vol.190 (2), p.353-387
issn 0026-9255
1436-5081
language eng
recordid cdi_proquest_journals_2291465371
source Springer Link
subjects Convolution
Harmonic functions
Mathematics
Mathematics and Statistics
Properties (attributes)
Theorems
title Geometric properties and sections for certain subclasses of harmonic mappings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20properties%20and%20sections%20for%20certain%20subclasses%20of%20harmonic%20mappings&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=Liu,%20Ming-Sheng&rft.date=2019-10-01&rft.volume=190&rft.issue=2&rft.spage=353&rft.epage=387&rft.pages=353-387&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-018-1240-5&rft_dat=%3Cproquest_cross%3E2291465371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-fdd4b06ce31c294c392e8417587f90958acfd8df6842419c8ef50b8de9818fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2291465371&rft_id=info:pmid/&rfr_iscdi=true