Loading…

Oil phase displacement by acoustic streaming in a reservoir-on-a-chip

This article presents a reservoir-on-a-chip study of acoustic streaming as an enhanced oil recovery mechanism. Microfluidic devices with different porosities are fabricated using photolithography to serve as reservoir-on-a-chip micromodels. We use microparticle image velocimetry to characterize acou...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2019-10, Vol.23 (10), p.1-17, Article 113
Main Authors: Yeh, Hsiang-Lan, Juárez, Jaime J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a reservoir-on-a-chip study of acoustic streaming as an enhanced oil recovery mechanism. Microfluidic devices with different porosities are fabricated using photolithography to serve as reservoir-on-a-chip micromodels. We use microparticle image velocimetry to characterize acoustic streaming-induced pumping as a function of frequency and amplitude. A scaling model applied to the velocity distribution is used to construct a state diagram that connects acoustic pressure to field frequency and amplitude. Optical video fluorescence microscopy is used to track the invasion of a water phase through the oil-saturated porous micromodel. Based on these measurements, we calculate the Blake number as a function of frequency to show that our system exhibits a narrow band dynamic response consistent with a system operating near resonance. Our observations are compared to a general model for Blake number as a function of frequency, porosity and voltage amplitude that was derived from a force balance model of the micromodel undergoing forced oscillation. The results from this paper are broadly applicable to systems beyond enhanced oil recovery, including separations, bio-analytical instruments, additive manufacturing and flow control.
ISSN:1613-4982
1613-4990
DOI:10.1007/s10404-019-2279-x