Loading…
Geometric and spectral properties of directed graphs under a lower Ricci curvature bound
For undirected graphs, the Ricci curvature introduced by Lin-Lu-Yau has been widely studied from various perspectives, especially geometric analysis. In the present paper, we discuss generalization problem of their Ricci curvature for directed graphs. We introduce a new generalization by using the m...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For undirected graphs, the Ricci curvature introduced by Lin-Lu-Yau has been widely studied from various perspectives, especially geometric analysis. In the present paper, we discuss generalization problem of their Ricci curvature for directed graphs. We introduce a new generalization by using the mean transition probability kernel which appears in the formulation of the Chung Laplacian. We conclude several geometric and spectral properties of directed graphs under a lower Ricci curvature bound extending previous results in the undirected case. |
---|---|
ISSN: | 2331-8422 |