Loading…
Towards Global Earthquake Early Warning with the MyShake Smartphone Seismic Network Part 2 -- Understanding MyShake performance around the world
The MyShake project aims to build a global smartphone seismic network to facilitate large-scale earthquake early warning and other applications by leveraging the power of crowdsourcing. The MyShake mobile application first detects earthquake shaking on a single phone. The earthquake is then confirme...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The MyShake project aims to build a global smartphone seismic network to facilitate large-scale earthquake early warning and other applications by leveraging the power of crowdsourcing. The MyShake mobile application first detects earthquake shaking on a single phone. The earthquake is then confirmed on the MyShake servers using a "network detection" algorithm that is activated by multiple single-phone detections. In part two of this two paper series, we report the first order performance of MyShake's Earthquake Early Warning (EEW) capability in various selected locations around the world. Due to the present sparseness of the MyShake network in most parts of the world, we use our simulation platform to understand and evaluate the system's performance in various tectonic settings. We assume that 0.1% of the population has the MyShake mobile application installed on their smartphone, and use historical earthquakes from the last 20 years to simulate triggering scenarios with different network configurations in various regions. Then, we run the detection algorithm with these simulated triggers to understand the performance of the system. The system performs best in regions featuring high population densities and onshore, upper crustal earthquakes M |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1909.08137 |