Loading…
A parametric study of phase change material characteristics when coupled with thermal insulation for different Australian climatic zones
The development of lightweight structures in the building industry has made the usage of thermal mass more difficult. Hence, phase change materials (PCMs) due to their latent heat storage are a favourable alternative which can be coupled with lightweight constructions. This paper explores the relati...
Saved in:
Published in: | Building and environment 2019-10, Vol.163, p.106317, Article 106317 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of lightweight structures in the building industry has made the usage of thermal mass more difficult. Hence, phase change materials (PCMs) due to their latent heat storage are a favourable alternative which can be coupled with lightweight constructions. This paper explores the relationship between PCM thicknesses, PCM transition temperatures, insulation, building orientations and energy consumption. For this exploration, a full-scale calorimeter was utilized to validate a model; through numerical simulations, the model was then used for four different climates of Australia. It was found that for all the climates, increasing PCM thicknesses ameliorates the overall energy saving, and the saving proportion is dependent on both the climate conditions and envelope thermal resistance (R-values). For low R-value opaque envelopes, the optimal transitional temperature is contingent upon the PCM thicknesses. Moreover, using insulation in sub-tropical, hot-dry, and cold climates enhances PCM efficiency and stabilizes the optimal PCM melting temperature for differing thicknesses; also, augmenting insulation thickness lowers the importance of PCM thicknesses. However, the use of well-insulated envelopes in tropical climates has an adverse impact on PCM efficacy due to the hindrance of night-time energy release. Finally, the PCM energy saving fully depends upon the building orientation, while the PCM optimum temperature is not conditional on this factor.
•A validated model is used for four different climates through numerical simulation.•Insulation has a notable effect on the efficiency and choice of PCMs.•Well-insulated envelopes in tropical climates have an adverse impact on PCM efficacy.•The PCM optimum temperature is not contingent upon building orientations. |
---|---|
ISSN: | 0360-1323 1873-684X |
DOI: | 10.1016/j.buildenv.2019.106317 |