Loading…
Row-crop planter performance to support variable-rate seeding of maize
Current planting technology possesses the ability to increase crop productivity and improve field efficiency by precisely metering and placing crop seeds. Planter performance depends on determining and utilizing optimal settings for different planting variables such as seed depth, down pressure, and...
Saved in:
Published in: | Precision agriculture 2020-06, Vol.21 (3), p.603-619 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current planting technology possesses the ability to increase crop productivity and improve field efficiency by precisely metering and placing crop seeds. Planter performance depends on determining and utilizing optimal settings for different planting variables such as seed depth, down pressure, and seed metering unit. The evolution of “Big Data” in agriculture today brings focus on the need for quality as-planted and yield mapping data. Therefore, an investigation was conducted to evaluate the performance of current planting technology for accurate placement of seeds while understanding the accuracy of as-planted data. Two studies consisting of two different setups on a 6-row, John Deere planter for seeding of maize (
Zea mays
L.) were conducted. The first study aimed at assessing planter performance at 2 depth settings (25 and 51 mm) and four different down pressure settings (varying from none to high), while the second study focused on evaluating planter performance during variable-rate seeding with treatments consisting of two seed metering units (John Deere Standard and Precision Planting’s eSet setups) with five different seeding rates and four ground speed treatments which provided a combination of 20 different meter speeds. Field data collection consisted of measuring plant emergence, plant population and seed depth whereas plant spacing, plant population after emergence along with distance and location for rate changes within the field were also recorded for the variable-rate seeding study. Results indicated that both depth setting and downforce affected final seeding depth. Measured seed depth was significantly different from the target depth even though time was spent adjusting the units to achieve the desired prior to planting. Crop emergence did not vary significantly for the different depth and downforce settings except for target depth in Field 1. Results from the variable-rate study indicated that seeding rate changes were accomplished within a quick response time ( |
---|---|
ISSN: | 1385-2256 1573-1618 |
DOI: | 10.1007/s11119-019-09685-3 |