Loading…
Dynamic and Elongation Rheology of Yeasted Bread Doughs
The rheology of yeasted bread doughs is a little-studied field despite yeast's importance in developing bread structure. A method of thermally inactivating the yeast within mixed bread doughs was developed to overcome the difficulty of yeast fermenting during rheological measurements. Sample st...
Saved in:
Published in: | Cereal chemistry 2002-11, Vol.79 (6), p.874-879 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rheology of yeasted bread doughs is a little-studied field despite yeast's importance in developing bread structure. A method of thermally inactivating the yeast within mixed bread doughs was developed to overcome the difficulty of yeast fermenting during rheological measurements. Sample stabilization by preshearing of dough samples at a stress amplitude of 1 Pa at 1 Hz for 10 sec improved the reliability of small amplitude oscillatory shear measurements, and resting 20 min within the rheometer was sufficient to produce reliable and consistent observations. Small amplitude oscillatory shear measurements were unable to detect any differences between yeasted and nonyeasted doughs nor any changes in linear viscoelastic properties due to fermentation. However, large strain uniaxial elongation measurements of yeasted doughs revealed a significant progressive decrease in elongational viscosities with fermentation. Size-exclusion HPLC analysis of yeasted doughs showed an increase in unextractable polymeric dough proteins, which were interpreted as evidence of cross-linking and therefore a potential improvement in dough properties. The apparent contradictions between uniaxial elongation and SE-HPLC studies of fermenting yeasted doughs can be attributed to gas bubbles within the dough interrupting the increasingly cross-linked protein network, resulting in the rheological weakness observed for fermenting yeasted doughs. |
---|---|
ISSN: | 0009-0352 1943-3638 |
DOI: | 10.1094/CCHEM.2002.79.6.874 |