Loading…

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Over the past few years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea o...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of robotics research 2003-12, Vol.22 (12), p.985-1003
Main Author: Fox, Dieter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past few years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error using the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptation technique.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364903022012001