Loading…
Adapting the Sample Size in Particle Filters Through KLD-Sampling
Over the past few years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea o...
Saved in:
Published in: | The International journal of robotics research 2003-12, Vol.22 (12), p.985-1003 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past few years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error using the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptation technique. |
---|---|
ISSN: | 0278-3649 1741-3176 |
DOI: | 10.1177/0278364903022012001 |