Loading…

One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell

In this work, heteroatom‐doped porous graphene was synthesized by pyrolysis method using microalgae Synechococcus elangatus as a biomass resource. The prepared samples were characterized by X‐ray diffraction (XRD), N2 sorption‐desorption, field emission scanning electron microscopy (FESEM) and X‐ray...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2019-10, Vol.19 (5), p.623-634
Main Authors: Sadegh Hassani, S., Ziaedini, A., Samiee, L., Dehghani, M., Mashayekhi, M., Faramarzi, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623
cites cdi_FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623
container_end_page 634
container_issue 5
container_start_page 623
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Sadegh Hassani, S.
Ziaedini, A.
Samiee, L.
Dehghani, M.
Mashayekhi, M.
Faramarzi, M. A.
description In this work, heteroatom‐doped porous graphene was synthesized by pyrolysis method using microalgae Synechococcus elangatus as a biomass resource. The prepared samples were characterized by X‐ray diffraction (XRD), N2 sorption‐desorption, field emission scanning electron microscopy (FESEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical behavior of the synthesized samples was investigated for oxygen reduction reaction (ORR) and evaluated using microbial fuel cell (MFC). The results revealed that the catalytic activity of the prepared sample including N, S and P atoms on porous graphene (PG) was close to the Pt/C 20 wt.%. According to the linear sweep voltammetry (LSV) measurements, the onset potential of optimal sample (0.97 V versus RHE) was close to the Pt/C 20 wt.% (0.99 V versus RHE). Furthermore, the stability test demonstrated much better tolerance to the methanol crossover effects for the optimal sample in comparison to the Pt/C 20 wt.%. Moreover, the microbial fuel cell (MFC) test showed that the cell potential of the optimal sample is close to Pt/C 2 wt.%, and represented a high peak power density of 31.5 mW m−2, which is comparable to the Pt/C 20wt.% (38.6 mW m−2) cathodes, because of synergistic effect of N, S and P co‐doped carbon structure, which leads to improvement in catalytic activity.
doi_str_mv 10.1002/fuce.201800167
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300499187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300499187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrETJ07GKmoLUlGHtnPkOOc2lYmD7Qhl4w3gGXkSEgWVkelu-L7_Tr_n3RM8IxgHj7IVMAswSTAmMbvwJiQmkR8nEb087zS-9m6sPfUISxI68T43NaCtgwZtu9odwVYWaYl2YFzFTYcy_f3xVeoGSrQyvDlCjy8UCGe04I6rzjq0t1V9QC-VMJqrA4chCsRRCy1EaxEoXh-46zepDZo3jeoGvqpHpai4QssWFMpAqVvvSnJl4e53Tr39crHLnvz1ZvWczde-CCPKfEIKKlMWRmVKI8njNKGC8RJDVEYiDmkZioImSSAFJyymlElZEEy5wGnKWByEU-9hzG2MfmvBuvykW1P3J_MgxJimKUlYT81Gqv_TWgMyb0z12veSE5wPpedD6fm59F5IR-G9UtD9Q-fLfbb4c38A2RCI6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300499187</pqid></control><display><type>article</type><title>One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sadegh Hassani, S. ; Ziaedini, A. ; Samiee, L. ; Dehghani, M. ; Mashayekhi, M. ; Faramarzi, M. A.</creator><creatorcontrib>Sadegh Hassani, S. ; Ziaedini, A. ; Samiee, L. ; Dehghani, M. ; Mashayekhi, M. ; Faramarzi, M. A.</creatorcontrib><description>In this work, heteroatom‐doped porous graphene was synthesized by pyrolysis method using microalgae Synechococcus elangatus as a biomass resource. The prepared samples were characterized by X‐ray diffraction (XRD), N2 sorption‐desorption, field emission scanning electron microscopy (FESEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical behavior of the synthesized samples was investigated for oxygen reduction reaction (ORR) and evaluated using microbial fuel cell (MFC). The results revealed that the catalytic activity of the prepared sample including N, S and P atoms on porous graphene (PG) was close to the Pt/C 20 wt.%. According to the linear sweep voltammetry (LSV) measurements, the onset potential of optimal sample (0.97 V versus RHE) was close to the Pt/C 20 wt.% (0.99 V versus RHE). Furthermore, the stability test demonstrated much better tolerance to the methanol crossover effects for the optimal sample in comparison to the Pt/C 20 wt.%. Moreover, the microbial fuel cell (MFC) test showed that the cell potential of the optimal sample is close to Pt/C 2 wt.%, and represented a high peak power density of 31.5 mW m−2, which is comparable to the Pt/C 20wt.% (38.6 mW m−2) cathodes, because of synergistic effect of N, S and P co‐doped carbon structure, which leads to improvement in catalytic activity.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201800167</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Algae ; Atomic properties ; Biochemical fuel cells ; Catalytic activity ; Crossovers ; Electrocatalyst ; Electrochemical analysis ; Field emission microscopy ; Fuel cells ; Graphene ; Heteroatom‐doped Graphene ; Microalgae Synechococcus elangatus ; Microbial Fuel Cell ; Microorganisms ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Photoelectrons ; Porous Graphene ; Pyrolysis ; Stability tests ; Synergistic effect</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.19 (5), p.623-634</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623</citedby><cites>FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sadegh Hassani, S.</creatorcontrib><creatorcontrib>Ziaedini, A.</creatorcontrib><creatorcontrib>Samiee, L.</creatorcontrib><creatorcontrib>Dehghani, M.</creatorcontrib><creatorcontrib>Mashayekhi, M.</creatorcontrib><creatorcontrib>Faramarzi, M. A.</creatorcontrib><title>One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>In this work, heteroatom‐doped porous graphene was synthesized by pyrolysis method using microalgae Synechococcus elangatus as a biomass resource. The prepared samples were characterized by X‐ray diffraction (XRD), N2 sorption‐desorption, field emission scanning electron microscopy (FESEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical behavior of the synthesized samples was investigated for oxygen reduction reaction (ORR) and evaluated using microbial fuel cell (MFC). The results revealed that the catalytic activity of the prepared sample including N, S and P atoms on porous graphene (PG) was close to the Pt/C 20 wt.%. According to the linear sweep voltammetry (LSV) measurements, the onset potential of optimal sample (0.97 V versus RHE) was close to the Pt/C 20 wt.% (0.99 V versus RHE). Furthermore, the stability test demonstrated much better tolerance to the methanol crossover effects for the optimal sample in comparison to the Pt/C 20 wt.%. Moreover, the microbial fuel cell (MFC) test showed that the cell potential of the optimal sample is close to Pt/C 2 wt.%, and represented a high peak power density of 31.5 mW m−2, which is comparable to the Pt/C 20wt.% (38.6 mW m−2) cathodes, because of synergistic effect of N, S and P co‐doped carbon structure, which leads to improvement in catalytic activity.</description><subject>Algae</subject><subject>Atomic properties</subject><subject>Biochemical fuel cells</subject><subject>Catalytic activity</subject><subject>Crossovers</subject><subject>Electrocatalyst</subject><subject>Electrochemical analysis</subject><subject>Field emission microscopy</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Heteroatom‐doped Graphene</subject><subject>Microalgae Synechococcus elangatus</subject><subject>Microbial Fuel Cell</subject><subject>Microorganisms</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Photoelectrons</subject><subject>Porous Graphene</subject><subject>Pyrolysis</subject><subject>Stability tests</subject><subject>Synergistic effect</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrETJ07GKmoLUlGHtnPkOOc2lYmD7Qhl4w3gGXkSEgWVkelu-L7_Tr_n3RM8IxgHj7IVMAswSTAmMbvwJiQmkR8nEb087zS-9m6sPfUISxI68T43NaCtgwZtu9odwVYWaYl2YFzFTYcy_f3xVeoGSrQyvDlCjy8UCGe04I6rzjq0t1V9QC-VMJqrA4chCsRRCy1EaxEoXh-46zepDZo3jeoGvqpHpai4QssWFMpAqVvvSnJl4e53Tr39crHLnvz1ZvWczde-CCPKfEIKKlMWRmVKI8njNKGC8RJDVEYiDmkZioImSSAFJyymlElZEEy5wGnKWByEU-9hzG2MfmvBuvykW1P3J_MgxJimKUlYT81Gqv_TWgMyb0z12veSE5wPpedD6fm59F5IR-G9UtD9Q-fLfbb4c38A2RCI6w</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Sadegh Hassani, S.</creator><creator>Ziaedini, A.</creator><creator>Samiee, L.</creator><creator>Dehghani, M.</creator><creator>Mashayekhi, M.</creator><creator>Faramarzi, M. A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201910</creationdate><title>One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell</title><author>Sadegh Hassani, S. ; Ziaedini, A. ; Samiee, L. ; Dehghani, M. ; Mashayekhi, M. ; Faramarzi, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>Atomic properties</topic><topic>Biochemical fuel cells</topic><topic>Catalytic activity</topic><topic>Crossovers</topic><topic>Electrocatalyst</topic><topic>Electrochemical analysis</topic><topic>Field emission microscopy</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Heteroatom‐doped Graphene</topic><topic>Microalgae Synechococcus elangatus</topic><topic>Microbial Fuel Cell</topic><topic>Microorganisms</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Photoelectrons</topic><topic>Porous Graphene</topic><topic>Pyrolysis</topic><topic>Stability tests</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadegh Hassani, S.</creatorcontrib><creatorcontrib>Ziaedini, A.</creatorcontrib><creatorcontrib>Samiee, L.</creatorcontrib><creatorcontrib>Dehghani, M.</creatorcontrib><creatorcontrib>Mashayekhi, M.</creatorcontrib><creatorcontrib>Faramarzi, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadegh Hassani, S.</au><au>Ziaedini, A.</au><au>Samiee, L.</au><au>Dehghani, M.</au><au>Mashayekhi, M.</au><au>Faramarzi, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>623</spage><epage>634</epage><pages>623-634</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>In this work, heteroatom‐doped porous graphene was synthesized by pyrolysis method using microalgae Synechococcus elangatus as a biomass resource. The prepared samples were characterized by X‐ray diffraction (XRD), N2 sorption‐desorption, field emission scanning electron microscopy (FESEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical behavior of the synthesized samples was investigated for oxygen reduction reaction (ORR) and evaluated using microbial fuel cell (MFC). The results revealed that the catalytic activity of the prepared sample including N, S and P atoms on porous graphene (PG) was close to the Pt/C 20 wt.%. According to the linear sweep voltammetry (LSV) measurements, the onset potential of optimal sample (0.97 V versus RHE) was close to the Pt/C 20 wt.% (0.99 V versus RHE). Furthermore, the stability test demonstrated much better tolerance to the methanol crossover effects for the optimal sample in comparison to the Pt/C 20 wt.%. Moreover, the microbial fuel cell (MFC) test showed that the cell potential of the optimal sample is close to Pt/C 2 wt.%, and represented a high peak power density of 31.5 mW m−2, which is comparable to the Pt/C 20wt.% (38.6 mW m−2) cathodes, because of synergistic effect of N, S and P co‐doped carbon structure, which leads to improvement in catalytic activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.201800167</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.19 (5), p.623-634
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_2300499187
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Algae
Atomic properties
Biochemical fuel cells
Catalytic activity
Crossovers
Electrocatalyst
Electrochemical analysis
Field emission microscopy
Fuel cells
Graphene
Heteroatom‐doped Graphene
Microalgae Synechococcus elangatus
Microbial Fuel Cell
Microorganisms
Oxygen Reduction Reaction
Oxygen reduction reactions
Photoelectrons
Porous Graphene
Pyrolysis
Stability tests
Synergistic effect
title One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20Step%20Synthesis%20of%20Tertiary%20Co%E2%80%90doped%20Graphene%20Electrocatalyst%20Using%20Microalgae%20Synechococcus%20elangatus%20for%20Applying%20in%20Microbial%20Fuel%20Cell&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sadegh%20Hassani,%20S.&rft.date=2019-10&rft.volume=19&rft.issue=5&rft.spage=623&rft.epage=634&rft.pages=623-634&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201800167&rft_dat=%3Cproquest_cross%3E2300499187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3547-11b4f9735d945fa6984c7ad0e5d5c634d3cb4882fca176447ffb104ac09977623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300499187&rft_id=info:pmid/&rfr_iscdi=true