Loading…

On Ramond Decorations

We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture mu...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2019-10, Vol.371 (1), p.145-157
Main Authors: Ip, Ivan C. H., Penner, Robert C., Zeitlin, Anton M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup S L ( 2 , R ) of OSp (1|2).
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03424-5