Loading…
On Ramond Decorations
We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture mu...
Saved in:
Published in: | Communications in mathematical physics 2019-10, Vol.371 (1), p.145-157 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43 |
container_end_page | 157 |
container_issue | 1 |
container_start_page | 145 |
container_title | Communications in mathematical physics |
container_volume | 371 |
creator | Ip, Ivan C. H. Penner, Robert C. Zeitlin, Anton M. |
description | We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup
S
L
(
2
,
R
)
of
OSp
(1|2). |
doi_str_mv | 10.1007/s00220-019-03424-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300965772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300965772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</originalsourceid><addsrcrecordid>eNp9jztPwzAUhS0EEqEwsjBVYjbc62c8ovKUKlVC3S0nuUGtaFzsdODfYwgSG9NdvnPO_Ri7QrhBAHubAYQADug4SCUU10esQiUFB4fmmFUACFwaNKfsLOctADhhTMUuV8P8Nezi0M3vqY0pjJs45HN20of3TBe_d8bWjw_rxTNfrp5eFndL3kotR-5MJ5A6qklYHRoMfa1MsGBsA-RMaxwFh87WgbqAoIIkDWCagLZxjZIzdj3V7lP8OFAe_TYe0lAWvZDlQ6OtFYUSE9WmmHOi3u_TZhfSp0fw3_Z-svfF3v_Ye11CcgrlAg9vlP6q_0l9AbsqWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965772</pqid></control><display><type>article</type><title>On Ramond Decorations</title><source>Springer Link</source><creator>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</creator><creatorcontrib>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</creatorcontrib><description>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup
S
L
(
2
,
R
)
of
OSp
(1|2).</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03424-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Riemann surfaces ; Subgroups ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-10, Vol.371 (1), p.145-157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</citedby><cites>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ip, Ivan C. H.</creatorcontrib><creatorcontrib>Penner, Robert C.</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><title>On Ramond Decorations</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup
S
L
(
2
,
R
)
of
OSp
(1|2).</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Riemann surfaces</subject><subject>Subgroups</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9jztPwzAUhS0EEqEwsjBVYjbc62c8ovKUKlVC3S0nuUGtaFzsdODfYwgSG9NdvnPO_Ri7QrhBAHubAYQADug4SCUU10esQiUFB4fmmFUACFwaNKfsLOctADhhTMUuV8P8Nezi0M3vqY0pjJs45HN20of3TBe_d8bWjw_rxTNfrp5eFndL3kotR-5MJ5A6qklYHRoMfa1MsGBsA-RMaxwFh87WgbqAoIIkDWCagLZxjZIzdj3V7lP8OFAe_TYe0lAWvZDlQ6OtFYUSE9WmmHOi3u_TZhfSp0fw3_Z-svfF3v_Ye11CcgrlAg9vlP6q_0l9AbsqWk4</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ip, Ivan C. H.</creator><creator>Penner, Robert C.</creator><creator>Zeitlin, Anton M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>On Ramond Decorations</title><author>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Riemann surfaces</topic><topic>Subgroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Ivan C. H.</creatorcontrib><creatorcontrib>Penner, Robert C.</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Ivan C. H.</au><au>Penner, Robert C.</au><au>Zeitlin, Anton M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ramond Decorations</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>371</volume><issue>1</issue><spage>145</spage><epage>157</epage><pages>145-157</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup
S
L
(
2
,
R
)
of
OSp
(1|2).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03424-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2019-10, Vol.371 (1), p.145-157 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2300965772 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Complex Systems Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Riemann surfaces Subgroups Theoretical |
title | On Ramond Decorations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ramond%20Decorations&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Ip,%20Ivan%20C.%20H.&rft.date=2019-10-01&rft.volume=371&rft.issue=1&rft.spage=145&rft.epage=157&rft.pages=145-157&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03424-5&rft_dat=%3Cproquest_cross%3E2300965772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300965772&rft_id=info:pmid/&rfr_iscdi=true |