Loading…

On Ramond Decorations

We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture mu...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2019-10, Vol.371 (1), p.145-157
Main Authors: Ip, Ivan C. H., Penner, Robert C., Zeitlin, Anton M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43
cites cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43
container_end_page 157
container_issue 1
container_start_page 145
container_title Communications in mathematical physics
container_volume 371
creator Ip, Ivan C. H.
Penner, Robert C.
Zeitlin, Anton M.
description We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup S L ( 2 , R ) of OSp (1|2).
doi_str_mv 10.1007/s00220-019-03424-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300965772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300965772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</originalsourceid><addsrcrecordid>eNp9jztPwzAUhS0EEqEwsjBVYjbc62c8ovKUKlVC3S0nuUGtaFzsdODfYwgSG9NdvnPO_Ri7QrhBAHubAYQADug4SCUU10esQiUFB4fmmFUACFwaNKfsLOctADhhTMUuV8P8Nezi0M3vqY0pjJs45HN20of3TBe_d8bWjw_rxTNfrp5eFndL3kotR-5MJ5A6qklYHRoMfa1MsGBsA-RMaxwFh87WgbqAoIIkDWCagLZxjZIzdj3V7lP8OFAe_TYe0lAWvZDlQ6OtFYUSE9WmmHOi3u_TZhfSp0fw3_Z-svfF3v_Ye11CcgrlAg9vlP6q_0l9AbsqWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965772</pqid></control><display><type>article</type><title>On Ramond Decorations</title><source>Springer Link</source><creator>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</creator><creatorcontrib>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</creatorcontrib><description>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup S L ( 2 , R ) of OSp (1|2).</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03424-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Riemann surfaces ; Subgroups ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-10, Vol.371 (1), p.145-157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</citedby><cites>FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ip, Ivan C. H.</creatorcontrib><creatorcontrib>Penner, Robert C.</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><title>On Ramond Decorations</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup S L ( 2 , R ) of OSp (1|2).</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Riemann surfaces</subject><subject>Subgroups</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9jztPwzAUhS0EEqEwsjBVYjbc62c8ovKUKlVC3S0nuUGtaFzsdODfYwgSG9NdvnPO_Ri7QrhBAHubAYQADug4SCUU10esQiUFB4fmmFUACFwaNKfsLOctADhhTMUuV8P8Nezi0M3vqY0pjJs45HN20of3TBe_d8bWjw_rxTNfrp5eFndL3kotR-5MJ5A6qklYHRoMfa1MsGBsA-RMaxwFh87WgbqAoIIkDWCagLZxjZIzdj3V7lP8OFAe_TYe0lAWvZDlQ6OtFYUSE9WmmHOi3u_TZhfSp0fw3_Z-svfF3v_Ye11CcgrlAg9vlP6q_0l9AbsqWk4</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ip, Ivan C. H.</creator><creator>Penner, Robert C.</creator><creator>Zeitlin, Anton M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>On Ramond Decorations</title><author>Ip, Ivan C. H. ; Penner, Robert C. ; Zeitlin, Anton M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Riemann surfaces</topic><topic>Subgroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Ivan C. H.</creatorcontrib><creatorcontrib>Penner, Robert C.</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Ivan C. H.</au><au>Penner, Robert C.</au><au>Zeitlin, Anton M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ramond Decorations</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>371</volume><issue>1</issue><spage>145</spage><epage>157</epage><pages>145-157</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup S L ( 2 , R ) of OSp (1|2).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03424-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-10, Vol.371 (1), p.145-157
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2300965772
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Riemann surfaces
Subgroups
Theoretical
title On Ramond Decorations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ramond%20Decorations&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Ip,%20Ivan%20C.%20H.&rft.date=2019-10-01&rft.volume=371&rft.issue=1&rft.spage=145&rft.epage=157&rft.pages=145-157&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03424-5&rft_dat=%3Cproquest_cross%3E2300965772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-96d21ede8e275ab1af846a7067b0e96c69ea91978aeda104a3e5006ba17b9b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300965772&rft_id=info:pmid/&rfr_iscdi=true