Loading…
The Crust in the Pamir: Insights From Receiver Functions
The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush,...
Saved in:
Published in: | Journal of geophysical research. Solid earth 2019-08, Vol.124 (8), p.9313-9331 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio ( |
---|---|
ISSN: | 2169-9313 2169-9356 |
DOI: | 10.1029/2019JB017765 |