Loading…
Dynamical thermalization in time-dependent billiards
Numerical experiments of the statistical evolution of an ensemble of noninteracting particles in a time-dependent billiard with inelastic collisions reveals the existence of three statistical regimes for the evolution of the speed ensemble, namely, diffusion plateau, normal growth/exponential decay,...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-10, Vol.29 (10), p.103122-103122 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical experiments of the statistical evolution of an ensemble of noninteracting particles in a time-dependent billiard with inelastic collisions reveals the existence of three statistical regimes for the evolution of the speed ensemble, namely, diffusion plateau, normal growth/exponential decay, and stagnation. These regimes are linked numerically to the transition from Gauss-like to Boltzmann-like speed distributions. Furthermore, the different evolution regimes are obtained analytically through velocity-space diffusion analysis. From these calculations, the asymptotic root mean square of speed, initial plateau, and the growth/decay rates for an intermediate number of collisions are determined in terms of the system parameters. The analytical calculations match the numerical experiments and point to a dynamical mechanism for “thermalization,” where inelastic collisions and a high-dimensional phase space lead to a bounded diffusion in the velocity space toward a stationary distribution function with a kind of “reservoir temperature” determined by the boundary oscillation amplitude and the restitution coefficient. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.5120023 |