Loading…
CBR-PSO: cost-based rough particle swarm optimization approach for high-dimensional imbalanced problems
Datasets, which have a considerably larger number of attributes compared to samples, face a serious classification challenge. This issue becomes even harder when such high-dimensional datasets are also imbalanced. Recently, such datasets have attracted the interest of both industry and academia and...
Saved in:
Published in: | Neural computing & applications 2019-10, Vol.31 (10), p.6345-6363 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Datasets, which have a considerably larger number of attributes compared to samples, face a serious classification challenge. This issue becomes even harder when such high-dimensional datasets are also imbalanced. Recently, such datasets have attracted the interest of both industry and academia and thereby have become a very attractive research area. In this paper, a new cost-sensitive classification method, the CBR-PSO, is presented for such high-dimensional datasets with different imbalance ratios and number of classes. The CBR-PSO is based on particle swarm optimization and rough set theory. The robustness of the algorithm is based on the simultaneously applying attribute reduction and classification; in addition, these two stages are also sensitive to misclassification cost. Algorithm efficiency is examined in publicly available datasets and compared to well-known attribute reduction and cost-sensitive classification algorithms. The statistical analysis and experiments showed that the CBR-PSO can be better than or comparable to the other algorithms, in terms of MAUC values. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-018-3469-2 |