Loading…
The Hörmander multiplier theorem, III: the complete bilinear case via interpolation
We develop a special multilinear complex interpolation theorem that allows us to prove an optimal version of the bilinear Hörmander multiplier theorem concerning symbols that lie in the Sobolev space L s r ( R 2 n ) , 2 ≤ r < ∞ , r s > 2 n , uniformly over all annuli. More precisely, given suc...
Saved in:
Published in: | Monatshefte für Mathematik 2019-12, Vol.190 (4), p.735-753 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a special multilinear complex interpolation theorem that allows us to prove an optimal version of the bilinear Hörmander multiplier theorem concerning symbols that lie in the Sobolev space
L
s
r
(
R
2
n
)
,
2
≤
r
<
∞
,
r
s
>
2
n
, uniformly over all annuli. More precisely, given such a symbol with smoothness index
s
, we find the largest open set of indices
(
1
/
p
1
,
1
/
p
2
)
for which we have boundedness for the associated bilinear multiplier operator from
L
p
1
(
R
n
)
×
L
p
2
(
R
n
)
to
L
p
(
R
n
)
when
1
/
p
=
1
/
p
1
+
1
/
p
2
,
1
<
p
1
,
p
2
<
∞
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-019-01300-x |