Loading…

Changes in nasal resistance and nasal geometry using pressure and acoustic rhinometry in a feline model of nasal congestion

This is the first report describing the use and pharmacological characterization of nasal patency by both pressure rhinometry and acoustic rhinometry (AcR) in an experimental cat model of nasal congestion. In pressure rhinometry studies, aerosolized compound 48/80 (0.1-3.0%), a mast cell liberator,...

Full description

Saved in:
Bibliographic Details
Published in:American journal of rhinology 1999-09, Vol.13 (5), p.375-384
Main Authors: McLeod, R L, Mingo, G G, Herczku, C, Corboz, M R, Ramos, S I, DeGennaro-Culver, F, Pedersen, O, Hey, J A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This is the first report describing the use and pharmacological characterization of nasal patency by both pressure rhinometry and acoustic rhinometry (AcR) in an experimental cat model of nasal congestion. In pressure rhinometry studies, aerosolized compound 48/80 (0.1-3.0%), a mast cell liberator, increased nasal airway resistance (NAR) 1.2 +/- 0.6, 5.8 +/- 0.5, 8.6 +/- 1.1 and 7.9 +/- 1.5 cmH2O.L/minute, respectively. Increases in NAR produced by compound 48/80 were associated with a 395% increase in histamine concentration found in the nasal lavage fluid. Pretreatment with the alpha-adrenoreceptor agonist, phenylpropanolamine (PPA; 0.1-3.0 mg/kg, i.v.), and the NO synthetase inhibitor, NG-nitro-L-arginine (L-NAME; 10 mg/kg, i.v.) attenuated the increases in NAR produced by compound 48/80. The histamine H1 antagonist chlorpheniramine (1.0 mg/kg, i.v.) and the H2 antagonist, ranitidine (1.0 mg/kg, i.v.) had no decongestant activity. Also without decongestant activity were the muscarinic antagonist atropine, the cyclooxygenase inhibitor indomethacin, and the 5-HT blocker methysergide. Aerosolized histamine (0.1-1.0%) also produced a dose dependent increase in NAR. In studies using acoustic rhinometry (AcR), intranasal application of compound 48/80 (0.1-1.0%) elicited pronounced decreases in nasal cavity volumes and minimum cross-sectional area (Amin). Pretreatment with PPA (3 mg/kg, i.v. or 10 mg/kg, p.o.) attenuated the decreases in nasal volume and Amin. The effects of topical intranasal histamine (0.1-1.0%) on nasal geometry were similar to compound 48/80. We conclude that the cat is a useful model for evaluating the pharmacological actions of potential nasal decongestants. Furthermore, we also conclude that AcR is a useful method for noninvasive assessment of nasal patency in a preclinical setting.
ISSN:1050-6586
1945-8924
1539-6290
1945-8932
DOI:10.2500/105065899781367573