Loading…
Characterizations and Direct Sums of Unit-Endoregular Modules
A module is called unit-endoregular if its endomorphism ring is unit-regular. In this paper, we continue the research in unit-endoregular modules. More characterizations of unit-endoregular modules are obtained. As a special case, we show that for an abelian group G, Endℤ(G) is a unit-regular Baer r...
Saved in:
Published in: | Proceedings of the Edinburgh Mathematical Society 2018-11, Vol.61 (4), p.1103-1112 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A module is called unit-endoregular if its endomorphism ring is unit-regular. In this paper, we continue the research in unit-endoregular modules. More characterizations of unit-endoregular modules are obtained. As a special case, we show that for an abelian group G, Endℤ(G) is a unit-regular Baer ring if and only if Endℤ(G) is a two-sided extending regular ring. While the class of unit-endoregular modules is not closed under direct sums, we provide a characterization when there are direct sums of two or more unit-endoregular modules also unit-endoregular under certain conditions. In particular, we investigate unit-endoregular modules which are direct sums of indecomposable modules. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091518000135 |