Loading…
Progressive Unsupervised Person Re-identification by Tracklet Association with Spatio-Temporal Regularization
Existing methods for person re-identification (Re-ID) are mostly based on supervised learning which requires numerous manually labeled samples across all camera views for training. Such a paradigm suffers the scalability issue since in real-world Re-ID application, it is difficult to exhaustively la...
Saved in:
Published in: | arXiv.org 2019-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Existing methods for person re-identification (Re-ID) are mostly based on supervised learning which requires numerous manually labeled samples across all camera views for training. Such a paradigm suffers the scalability issue since in real-world Re-ID application, it is difficult to exhaustively label abundant identities over multiple disjoint camera views. To this end, we propose a progressive deep learning method for unsupervised person Re-ID in the wild by Tracklet Association with Spatio-Temporal Regularization (TASTR). In our approach, we first collect tracklet data within each camera by automatic person detection and tracking. Then, an initial Re-ID model is trained based on within-camera triplet construction for person representation learning. After that, based on the person visual feature and spatio-temporal constraint, we associate cross-camera tracklets to generate cross-camera triplets and update the Re-ID model. Lastly, with the refined Re-ID model, better visual feature of person can be extracted, which further promote the association of cross-camera tracklets. The last two steps are iterated multiple times to progressively upgrade the Re-ID model. |
---|---|
ISSN: | 2331-8422 |