Loading…

Using species attributes to characterize late‐glacial and early‐Holocene environments at Kråkenes, western Norway

Aim We aim to use species attributes such as distributions and indicator values to reconstruct past biomes, environment, and temperatures from detailed plant‐macrofossil data covering the late glacial to the early Holocene (ca. 14–9 ka). Location Kråkenes, western Norway. Methods We applied attribut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vegetation science 2019-11, Vol.30 (6), p.1228-1238
Main Authors: Felde, Vivian Astrup, Birks, Hilary Helen, Giesecke, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim We aim to use species attributes such as distributions and indicator values to reconstruct past biomes, environment, and temperatures from detailed plant‐macrofossil data covering the late glacial to the early Holocene (ca. 14–9 ka). Location Kråkenes, western Norway. Methods We applied attributes for present‐day geographical distribution, optimal July and January temperatures, and Ellenberg indicator values for plants in the macrofossil data‐set. We used assemblage weighted means (AWM) to reconstruct past biomes, changes in light (L), nitrogen (N), moisture (F), and soil reaction (R), and temperatures. We compared the temperature reconstructions with previous chironomid‐inferred temperatures. Results After the start of the Holocene around 11.5 ka, the Arctic‐montane biome, which was stable during the late‐glacial period, shifted successively into the Boreo‐arctic montane, Wide‐boreal, Boreo‐montane, Boreo‐temperate, and Wide‐temperate biomes by ca. 9.0 ka. Circumpolar and Eurasian floristic elements characteristic of the late‐glacial decreased and the Eurosiberian element became prominent. Light demand (L), soil moisture (F), nitrogen (N), and soil reaction (R) show different, but complementary responses. Light‐demanding plants decreased with time. Soil moisture was relatively stable until it increased during organic soil development during the early Holocene. Soil nitrogen increased during the early Holocene. Soil reaction (pH) decreased during the Allerød, but increased during the Younger Dryas. It decreased markedly after the start of the Holocene, reaching low but stable levels in the early Holocene. Mean July and January temperatures show similar patterns to the chironomid‐inferred mean July temperature trends at Kråkenes, but chironomids show larger fluctuations and interesting differences in timing. Conclusion Assigning attributes to macrofossil species is a useful new approach in palaeoecology. It can demonstrate changes in biomes, ecological conditions, and temperatures. The late‐glacial to early‐Holocene transition may form an analogue for changes observed in the modern arctic and in mountains, with melting glaciers, permafrost thaw, and shrub encroachment into tundra. We demonstrated the value of applying species’ attributes to the palaeoecological reconstruction of past environments and climates. We used modern‐day distributions of plant species, indicator values, and optimal January and July temperatures to reconstruct late‐glacial and ea
ISSN:1100-9233
1654-1103
DOI:10.1111/jvs.12804