Loading…
Stability Analysis of the First Order Non-linear Impulsive Time Varying Delay Dynamic System on Time Scales
In this paper, we study Hyers–Ulam stability and Hyers–Ulam–Rassias stability of first order non-linear impulsive time varying delay dynamic system on time scales, via a fixed point approach. We obtain some results of existence and uniqueness of solutions by using Picard operator. The main tools for...
Saved in:
Published in: | Qualitative theory of dynamical systems 2019-12, Vol.18 (3), p.825-840 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study Hyers–Ulam stability and Hyers–Ulam–Rassias stability of first order non-linear impulsive time varying delay dynamic system on time scales, via a fixed point approach. We obtain some results of existence and uniqueness of solutions by using Picard operator. The main tools for our results are the Grönwall’s inequality on time scales, abstract Grönwall lemma and Banach contraction principle. In order to overcome difficulties arises in our considered model, we pose some conditions along with Lipchitz condition. At the end, an example is given that shows the validity of our main results. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-019-00315-x |