Loading…

Simple Colorimetric Chemosensor Array for Oxyanions: Quantitative Assay for Herbicide Glyphosate

Although the determination of oxyanions due to correlation with metabolic processes and diseases is in high demand, most of the developed methods are suffering from a shortage of a capability of on-site analysis, sensitivity, and user-friendliness. This paper introduces the first colorimetric chemos...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2019-11, Vol.91 (21), p.13627-13632
Main Authors: Hamedpour, Vahid, Sasaki, Yui, Zhang, Zhoujie, Kubota, Riku, Minami, Tsuyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the determination of oxyanions due to correlation with metabolic processes and diseases is in high demand, most of the developed methods are suffering from a shortage of a capability of on-site analysis, sensitivity, and user-friendliness. This paper introduces the first colorimetric chemosensor array targeting various anions including glyphosate. The proposed sensor benefits from some notable features such as utilizing only commercially available reagents, recognizing similarly structured compounds by biomaterial-free sensors, and providing a fingerprint-like response originating from pattern recognition. The detection mechanism is based on an anion sensing strategy named coordination binding-based sensor array (CBSA). In CBSA, competitive coordinative bonding of a metal ion (Zn2+) between a catechol dye (i.e., indicator) and target anions occurs, and changes in the optical properties of the dye represent the target’s concentration. For data processing, two chemometrical techniques including linear discrimination analysis (LDA) and an artificial neural network (ANN) for pattern classification and regression/prediction purposes were successfully employed, respectively. Finally, the proposed chemosensor was subjected to glyphosate samples (commercial herbicide and tap water samples) and produced satisfactory results.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b02822