Loading…
Hybrid numerical approach to study the interaction of the rarefied gas flow in a microchannel with a cantilever
Numerical approach and computer code are developed to study 2D rarefied gas flow in a microchannel having an elastic obstacle. A Couette rarefied gas flow passing an elastic beam clamped to the fixed bottom wall is considered as a test case. The gas flow is simulated by the direct simulation Monte C...
Saved in:
Published in: | International journal of non-linear mechanics 2019-12, Vol.117, p.103239, Article 103239 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical approach and computer code are developed to study 2D rarefied gas flow in a microchannel having an elastic obstacle. A Couette rarefied gas flow passing an elastic beam clamped to the fixed bottom wall is considered as a test case. The gas flow is simulated by the direct simulation Monte Carlo (DSMC) method applying the advanced Simplified Bernoulli Trial (SBT) scheme. The elastic obstacle is modelled as a geometrically nonlinear Euler–Bernoulli beam. The beam displacements and velocities are synchronized in both models. The proposed approach guarantees a full coupling of gas–elastic beam interaction for unlimited time of simulation. The influence of the gas flow on the beam vibration is studied for a long period of simulation. The amplitude of vibration and the frequency response functions are strongly influenced by the velocity of the flow.
•Rarefied gas flow in microchannel.•Elastic obstacle modelled as geometrically nonlinear Euler–Bernoulli beam.•DSMC method with Simplified Bernoulli trials (SBT) collision scheme was used to simulate rarefied gas flow.•Reduced model for the beam vibrations.•Special algorithm and computer codes to synchronize the motion of the gas and the beam.•Influence of the flow on the frequency response functions of the beam. |
---|---|
ISSN: | 0020-7462 1878-5638 |
DOI: | 10.1016/j.ijnonlinmec.2019.103239 |