Loading…
Automatic knowledge extraction from survey data: learning M-of-N constructs using a hybrid approach
Data collected from a survey typically consist of attributes that are mostly if not completely binary-valued or binary-encoded. We present a method for handling such data where the underlying data analysis can be cast as a classification problem. We propose a hybrid method that combines neural netwo...
Saved in:
Published in: | The Journal of the Operational Research Society 2005-01, Vol.56 (1), p.3-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data collected from a survey typically consist of attributes that are mostly if not completely binary-valued or binary-encoded. We present a method for handling such data where the underlying data analysis can be cast as a classification problem. We propose a hybrid method that combines neural network and decision tree methods. The network is trained to remove irrelevant data attributes and the decision tree is applied to extract comprehensible classification rules from the trained network. The conditions of the rules are in the form of a conjunction of M-of-N constructs. An M-of-N construct is a rule condition that is satisfied if (at least, exactly, at most) M of the N binary attributes in the construct are present. The effectiveness of the method is illustrated on data collected for a study of global car market segmentation. The results show that besides achieving high predictive accuracy, the method also allows meaningful interpretation of the relationships among the data variables. |
---|---|
ISSN: | 0160-5682 1476-9360 |
DOI: | 10.1057/palgrave.jors.2601807 |