Loading…

Adding and removing an attribute in a DEA model: theory and processing

We present a theoretical and computational study of the impact of inserting a new attribute and removing an old attribute in a data envelopment analysis (DEA) model. Our objective is to obviate a portion of the computational effort needed to process such model changes by studying how the efficient/i...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Operational Research Society 2008-12, Vol.59 (12), p.1674-1684
Main Authors: López, F. J., Dula, J. H., Dutá, J. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a theoretical and computational study of the impact of inserting a new attribute and removing an old attribute in a data envelopment analysis (DEA) model. Our objective is to obviate a portion of the computational effort needed to process such model changes by studying how the efficient/inefficient status of decision-making units (DMUs) is affected. Reducing computational efforts is important since DEA is known to be computationally intensive, especially in large-scale applications. We present a comprehensive theoretical study of the impact of attribute insertion and removal in DEA models, which includes sufficient conditions for identifying efficient DMUs when an attribute is added and inefficient DMUs when an attribute is removed. We also introduce a new procedure, HyperClimb, specially designed to quickly identify some of the new efficient DMUs, without involving LPs, when the model changes with the addition of an attribute. We report on results from computational tests designed to assess this procedure's effectiveness.
ISSN:0160-5682
1476-9360
DOI:10.1057/palgrave.jors.2602505