Loading…
Generalized bulk-edge correspondence for non-Hermitian topological systems
A modified periodic boundary condition adequate for non-Hermitian topological systems is proposed. Under this boundary condition, a topological number characterizing the system is defined in the same way as in the corresponding Hermitian system, and hence, at the cost of introducing an additional pa...
Saved in:
Published in: | Physical review. B 2019-10, Vol.100 (16), Article 165430 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A modified periodic boundary condition adequate for non-Hermitian topological systems is proposed. Under this boundary condition, a topological number characterizing the system is defined in the same way as in the corresponding Hermitian system, and hence, at the cost of introducing an additional parameter that characterizes the non-Hermitian skin effect, the idea of bulk-edge correspondence in the Hermitian limit can be applied almost as it is. We develop this framework through the analysis of a non-Hermitian Su-Schrieffer-Heeger model with chiral symmetry and prove the bulk-edge correspondence in a generalized parameter space. A finite region in this parameter space with a nontrivial pair of chiral winding numbers is identified as topologically nontrivial, indicating the existence of a topologically protected edge state under an open boundary. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.100.165430 |