Loading…

Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs

Highly sensitive silicon-nanonet biologically active field-effect transistors (BioFETs) for the detection of influenza A (H1N1) virus have been demonstrated using a top-down process. The BioFETs show excellent intrinsic electrical characteristics, such as a low threshold voltage of 0.7 V and high on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2019-12, Vol.19 (23), p.10985-10990
Main Authors: Park, Chanoh, Choi, Wonyoung, Kim, Donghoon, Jin, Bo, Lee, Jeong-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03
cites cdi_FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03
container_end_page 10990
container_issue 23
container_start_page 10985
container_title IEEE sensors journal
container_volume 19
creator Park, Chanoh
Choi, Wonyoung
Kim, Donghoon
Jin, Bo
Lee, Jeong-Soo
description Highly sensitive silicon-nanonet biologically active field-effect transistors (BioFETs) for the detection of influenza A (H1N1) virus have been demonstrated using a top-down process. The BioFETs show excellent intrinsic electrical characteristics, such as a low threshold voltage of 0.7 V and high on/off current ratio of ~10 7 . The sensing characteristics were measured at room temperature with various concentrations of H1N1 virus in a range of 10 pg/ml - 100 ng/ml. The current-related sensitivity ( {S}_{ {I}} ) shows a higher value in the subthreshold regime, where {S}_{ {I}} is strongly correlated with the subthreshold swing ( SS ). The voltage-related sensitivity ( {S}_{ {V}} ) shows almost constant behavior from the subthreshold regime to the linear regime. The limit of detection (LOD) was 10 pg/ml, which is 6 times lower than values previously reported for FET-type sensors. In addition, the nanonet sensors exhibit high specificity to influenza A virus with negligible false positive for influenza B virus.
doi_str_mv 10.1109/JSEN.2019.2936216
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316570470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8805347</ieee_id><sourcerecordid>2316570470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJTawSPH4EdvLUgotqsoivHZWmjjUVUiKnSCVrydREasZjc6dGR2EzoGMAIi-eUymyxEloEdUs5hCfIAGIISKQHJ12PeMRJzJ92N0EsKGdKQUcoCSmftYlzuc2Cq4xn1bfGcbmzWurnBd4HlVlK2tflI8xlczWMI1fnW-DfjNNWucuNJlHbhMq7qyDb519f30OZyioyItgz37q0P00o0ns2jx9DCfjBdR1v3YRFQAz5UWQIFLq6iVRUo411YCiXOqC6kokysoGIecKqYJZDwlQmuRC7oibIgu93u3vv5qbWjMpm591Z00lEEsJOGyp2BPZb4OwdvCbL37TP3OADG9O9O7M7078-euy1zsM85a-88rRQTjkv0CzjZnBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316570470</pqid></control><display><type>article</type><title>Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs</title><source>IEEE Xplore (Online service)</source><creator>Park, Chanoh ; Choi, Wonyoung ; Kim, Donghoon ; Jin, Bo ; Lee, Jeong-Soo</creator><creatorcontrib>Park, Chanoh ; Choi, Wonyoung ; Kim, Donghoon ; Jin, Bo ; Lee, Jeong-Soo</creatorcontrib><description><![CDATA[Highly sensitive silicon-nanonet biologically active field-effect transistors (BioFETs) for the detection of influenza A (H1N1) virus have been demonstrated using a top-down process. The BioFETs show excellent intrinsic electrical characteristics, such as a low threshold voltage of 0.7 V and high on/off current ratio of ~10 7 . The sensing characteristics were measured at room temperature with various concentrations of H1N1 virus in a range of 10 pg/ml - 100 ng/ml. The current-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula>) shows a higher value in the subthreshold regime, where <inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula> is strongly correlated with the subthreshold swing ( SS ). The voltage-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {V}} </tex-math></inline-formula>) shows almost constant behavior from the subthreshold regime to the linear regime. The limit of detection (LOD) was 10 pg/ml, which is 6 times lower than values previously reported for FET-type sensors. In addition, the nanonet sensors exhibit high specificity to influenza A virus with negligible false positive for influenza B virus.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2936216</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>BioFET ; Biological effects ; biosensor ; Biosensors ; Field effect transistors ; H1N1 ; Influenza ; influenza A ; Logic gates ; Nanobioscience ; Nanonet ; Room temperature ; Semiconductor devices ; Sensitivity ; Sensors ; Silicon ; Surface treatment ; Swine flu ; Threshold voltage ; Viruses ; Viruses (medical)</subject><ispartof>IEEE sensors journal, 2019-12, Vol.19 (23), p.10985-10990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03</citedby><cites>FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03</cites><orcidid>0000-0003-4972-4993 ; 0000-0003-3197-5129 ; 0000-0003-4407-1954 ; 0000-0003-3031-0715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8805347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Park, Chanoh</creatorcontrib><creatorcontrib>Choi, Wonyoung</creatorcontrib><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Lee, Jeong-Soo</creatorcontrib><title>Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Highly sensitive silicon-nanonet biologically active field-effect transistors (BioFETs) for the detection of influenza A (H1N1) virus have been demonstrated using a top-down process. The BioFETs show excellent intrinsic electrical characteristics, such as a low threshold voltage of 0.7 V and high on/off current ratio of ~10 7 . The sensing characteristics were measured at room temperature with various concentrations of H1N1 virus in a range of 10 pg/ml - 100 ng/ml. The current-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula>) shows a higher value in the subthreshold regime, where <inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula> is strongly correlated with the subthreshold swing ( SS ). The voltage-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {V}} </tex-math></inline-formula>) shows almost constant behavior from the subthreshold regime to the linear regime. The limit of detection (LOD) was 10 pg/ml, which is 6 times lower than values previously reported for FET-type sensors. In addition, the nanonet sensors exhibit high specificity to influenza A virus with negligible false positive for influenza B virus.]]></description><subject>BioFET</subject><subject>Biological effects</subject><subject>biosensor</subject><subject>Biosensors</subject><subject>Field effect transistors</subject><subject>H1N1</subject><subject>Influenza</subject><subject>influenza A</subject><subject>Logic gates</subject><subject>Nanobioscience</subject><subject>Nanonet</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Surface treatment</subject><subject>Swine flu</subject><subject>Threshold voltage</subject><subject>Viruses</subject><subject>Viruses (medical)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJTawSPH4EdvLUgotqsoivHZWmjjUVUiKnSCVrydREasZjc6dGR2EzoGMAIi-eUymyxEloEdUs5hCfIAGIISKQHJ12PeMRJzJ92N0EsKGdKQUcoCSmftYlzuc2Cq4xn1bfGcbmzWurnBd4HlVlK2tflI8xlczWMI1fnW-DfjNNWucuNJlHbhMq7qyDb519f30OZyioyItgz37q0P00o0ns2jx9DCfjBdR1v3YRFQAz5UWQIFLq6iVRUo411YCiXOqC6kokysoGIecKqYJZDwlQmuRC7oibIgu93u3vv5qbWjMpm591Z00lEEsJOGyp2BPZb4OwdvCbL37TP3OADG9O9O7M7078-euy1zsM85a-88rRQTjkv0CzjZnBQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Park, Chanoh</creator><creator>Choi, Wonyoung</creator><creator>Kim, Donghoon</creator><creator>Jin, Bo</creator><creator>Lee, Jeong-Soo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4972-4993</orcidid><orcidid>https://orcid.org/0000-0003-3197-5129</orcidid><orcidid>https://orcid.org/0000-0003-4407-1954</orcidid><orcidid>https://orcid.org/0000-0003-3031-0715</orcidid></search><sort><creationdate>20191201</creationdate><title>Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs</title><author>Park, Chanoh ; Choi, Wonyoung ; Kim, Donghoon ; Jin, Bo ; Lee, Jeong-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BioFET</topic><topic>Biological effects</topic><topic>biosensor</topic><topic>Biosensors</topic><topic>Field effect transistors</topic><topic>H1N1</topic><topic>Influenza</topic><topic>influenza A</topic><topic>Logic gates</topic><topic>Nanobioscience</topic><topic>Nanonet</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Surface treatment</topic><topic>Swine flu</topic><topic>Threshold voltage</topic><topic>Viruses</topic><topic>Viruses (medical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Chanoh</creatorcontrib><creatorcontrib>Choi, Wonyoung</creatorcontrib><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Lee, Jeong-Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Chanoh</au><au>Choi, Wonyoung</au><au>Kim, Donghoon</au><au>Jin, Bo</au><au>Lee, Jeong-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>19</volume><issue>23</issue><spage>10985</spage><epage>10990</epage><pages>10985-10990</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Highly sensitive silicon-nanonet biologically active field-effect transistors (BioFETs) for the detection of influenza A (H1N1) virus have been demonstrated using a top-down process. The BioFETs show excellent intrinsic electrical characteristics, such as a low threshold voltage of 0.7 V and high on/off current ratio of ~10 7 . The sensing characteristics were measured at room temperature with various concentrations of H1N1 virus in a range of 10 pg/ml - 100 ng/ml. The current-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula>) shows a higher value in the subthreshold regime, where <inline-formula> <tex-math notation="LaTeX">{S}_{ {I}} </tex-math></inline-formula> is strongly correlated with the subthreshold swing ( SS ). The voltage-related sensitivity (<inline-formula> <tex-math notation="LaTeX">{S}_{ {V}} </tex-math></inline-formula>) shows almost constant behavior from the subthreshold regime to the linear regime. The limit of detection (LOD) was 10 pg/ml, which is 6 times lower than values previously reported for FET-type sensors. In addition, the nanonet sensors exhibit high specificity to influenza A virus with negligible false positive for influenza B virus.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2936216</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4972-4993</orcidid><orcidid>https://orcid.org/0000-0003-3197-5129</orcidid><orcidid>https://orcid.org/0000-0003-4407-1954</orcidid><orcidid>https://orcid.org/0000-0003-3031-0715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-12, Vol.19 (23), p.10985-10990
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2316570470
source IEEE Xplore (Online service)
subjects BioFET
Biological effects
biosensor
Biosensors
Field effect transistors
H1N1
Influenza
influenza A
Logic gates
Nanobioscience
Nanonet
Room temperature
Semiconductor devices
Sensitivity
Sensors
Silicon
Surface treatment
Swine flu
Threshold voltage
Viruses
Viruses (medical)
title Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Detection%20of%20Influenza%20A%20(H1N1)%20Virus%20With%20Silicon%20Nanonet%20BioFETs&rft.jtitle=IEEE%20sensors%20journal&rft.au=Park,%20Chanoh&rft.date=2019-12-01&rft.volume=19&rft.issue=23&rft.spage=10985&rft.epage=10990&rft.pages=10985-10990&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2936216&rft_dat=%3Cproquest_cross%3E2316570470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-2514d89512147e82e7fa0449e7106d29f78237b1f341d283901c4a05995d52b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316570470&rft_id=info:pmid/&rft_ieee_id=8805347&rfr_iscdi=true