Loading…

Physics-induced graph neural network: An application to wind-farm power estimation

We propose a physics-inspired data-driven model that can estimate the power outputs of all wind turbines in any layout under any wind conditions. The proposed model comprises two parts: (1) representing a wind farm configuration with the current wind conditions as a graph, and (2) processing the gra...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2019-11, Vol.187, p.115883, Article 115883
Main Authors: Park, Junyoung, Park, Jinkyoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a physics-inspired data-driven model that can estimate the power outputs of all wind turbines in any layout under any wind conditions. The proposed model comprises two parts: (1) representing a wind farm configuration with the current wind conditions as a graph, and (2) processing the graph input and estimating power outputs of all the wind turbines using a physics-induced graph neural network (PGNN). By utilizing the form of an engineering wake interaction model as a basis function, PGNN effectively imposes physics-induced bias for modelling the interaction among wind turbines into the network structure. simulation study shows that the combination of a graph representation of a wind farm and PGNN produce not only accurate and generalizable estimations but also physically explainable estimations. That is, the computing and reasoning procedures of PGNN can be understood by analyzing the intermediate features of the model. We also conduct a layout optimization experiment to show the effectiveness of PGNN as a differentiable surrogate model for wind farm power estimations. •Propose a graph representation of a wind farm with considering wind conditions.•Propose a physics-inspired data-driven model for the wind farm power estimation task.•Combination of the wind farm graph and the model produce accurate power estimations.•The model serves as a differentiable surrogate model for wind farm power estimation.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2019.115883