Loading…
A Note on Approximation by Trigonometric Polynomials
Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n > 1, then we assume that the segments [ a k , b k ] are pairwise disjoint. Assume that the following property holds: E ∩ ( E + 2π ν ) = ∅, ν ∈ ℤ , ν ≠ 0. Denote by H ω + r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) − f ( r...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.243 (6), p.981-984 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
E
=
∪
k
=
1
n
a
k
b
k
⊂
ℝ
; if
n
> 1, then we assume that the segments [
a
k
,
b
k
] are pairwise disjoint. Assume that the following property holds:
E
∩ (
E
+ 2π
ν
) = ∅,
ν
∈
ℤ
,
ν
≠ 0. Denote by
H
ω
+
r
(
E
) the space of functions
f
defined on
E
such that |
f
(
r
)
(
x
2
) −
f
(
r
)
(
x
1
)| ≤
c
f
ω
(|
x
2
−
x
1
|),
x
1
,
x
2
∈
E
,
f
(0)
≡
f
. Assume that a modulus of continuity
ω
satisfies the condition
∫
0
x
ω
t
t
dt
+
x
∫
x
∞
ω
t
t
2
dt
≤
cω
x
.
We find a constructive description of the space
H
ω
+
r
(
E
) in terms of the rate of nonuniform approximation of a function
f
∈
H
ω
+
r
(
E
) by trigonometric polynomials if
E
and
ω
satisfy the above conditions. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04598-y |