Loading…

A Note on Approximation by Trigonometric Polynomials

Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n > 1, then we assume that the segments [ a k ,  b k ] are pairwise disjoint. Assume that the following property holds: E  ∩ ( E  + 2π ν ) = ∅, ν  ∈  ℤ , ν  ≠ 0. Denote by H ω  +  r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) −  f ( r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.243 (6), p.981-984
Main Author: Shirokov, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c463y-71f7f1d8189d593a8cd8fa8837a5c8927c5cda3287e464d0fed9c59afd1519053
container_end_page 984
container_issue 6
container_start_page 981
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 243
creator Shirokov, N. A.
description Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n > 1, then we assume that the segments [ a k ,  b k ] are pairwise disjoint. Assume that the following property holds: E  ∩ ( E  + 2π ν ) = ∅, ν  ∈  ℤ , ν  ≠ 0. Denote by H ω  +  r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) −  f ( r ) ( x 1 )| ≤  c f ω (| x 2  −  x 1 |), x 1 , x 2  ∈  E , f (0)  ≡  f . Assume that a modulus of continuity ω satisfies the condition ∫ 0 x ω t t dt + x ∫ x ∞ ω t t 2 dt ≤ cω x . We find a constructive description of the space H ω  +  r ( E ) in terms of the rate of nonuniform approximation of a function f  ∈  H ω  +  r ( E ) by trigonometric polynomials if E and ω satisfy the above conditions.
doi_str_mv 10.1007/s10958-019-04598-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2317062660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615361060</galeid><sourcerecordid>A615361060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463y-71f7f1d8189d593a8cd8fa8837a5c8927c5cda3287e464d0fed9c59afd1519053</originalsourceid><addsrcrecordid>eNqNkl9LwzAUxYsoOKdfwKeCTz5kJk3TJI9j-GcwVHQ-h5gmJWNrZtLB-u2Nq7ANxpQ83NzwO-cm5CTJNYIDBCG9CwhywgBEHMCccAbak6SHCMWAUU5O4x7SDGBM8_PkIoQZjKKC4V6SD9Nn1-jU1elwufRubReysbH7bNOpt5Wr3UI33qr01c3b2Fg5D5fJmYlFX_3WfvLxcD8dPYHJy-N4NJwAlRe4BRQZalDJEOMl4VgyVTIjGcNUEsV4RhVRpcQZozov8hIaXXJFuDQlIohDgvvJTecbL_a10qERM7fydRwpMowoLLKigFuqknMtbG1c46Va2KDEsGBZfCjBxXEKRQLBjRc4QFW61l7OXa2Njcd7rv_id_wHB_i4Sr2w6uCA_wl2JtzuCSLT6HVTyVUIYvz-tm_-J7vjm3Ws8i4Er41Y-pgV3woExU8GRZdBETMoNhkUbRThThQiXFfabz_wiOob6GLYmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317062660</pqid></control><display><type>article</type><title>A Note on Approximation by Trigonometric Polynomials</title><source>Springer Link</source><creator>Shirokov, N. A.</creator><creatorcontrib>Shirokov, N. A.</creatorcontrib><description>Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n &gt; 1, then we assume that the segments [ a k ,  b k ] are pairwise disjoint. Assume that the following property holds: E  ∩ ( E  + 2π ν ) = ∅, ν  ∈  ℤ , ν  ≠ 0. Denote by H ω  +  r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) −  f ( r ) ( x 1 )| ≤  c f ω (| x 2  −  x 1 |), x 1 , x 2  ∈  E , f (0)  ≡  f . Assume that a modulus of continuity ω satisfies the condition ∫ 0 x ω t t dt + x ∫ x ∞ ω t t 2 dt ≤ cω x . We find a constructive description of the space H ω  +  r ( E ) in terms of the rate of nonuniform approximation of a function f  ∈  H ω  +  r ( E ) by trigonometric polynomials if E and ω satisfy the above conditions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04598-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.243 (6), p.981-984</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c463y-71f7f1d8189d593a8cd8fa8837a5c8927c5cda3287e464d0fed9c59afd1519053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shirokov, N. A.</creatorcontrib><title>A Note on Approximation by Trigonometric Polynomials</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n &gt; 1, then we assume that the segments [ a k ,  b k ] are pairwise disjoint. Assume that the following property holds: E  ∩ ( E  + 2π ν ) = ∅, ν  ∈  ℤ , ν  ≠ 0. Denote by H ω  +  r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) −  f ( r ) ( x 1 )| ≤  c f ω (| x 2  −  x 1 |), x 1 , x 2  ∈  E , f (0)  ≡  f . Assume that a modulus of continuity ω satisfies the condition ∫ 0 x ω t t dt + x ∫ x ∞ ω t t 2 dt ≤ cω x . We find a constructive description of the space H ω  +  r ( E ) in terms of the rate of nonuniform approximation of a function f  ∈  H ω  +  r ( E ) by trigonometric polynomials if E and ω satisfy the above conditions.</description><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkl9LwzAUxYsoOKdfwKeCTz5kJk3TJI9j-GcwVHQ-h5gmJWNrZtLB-u2Nq7ANxpQ83NzwO-cm5CTJNYIDBCG9CwhywgBEHMCccAbak6SHCMWAUU5O4x7SDGBM8_PkIoQZjKKC4V6SD9Nn1-jU1elwufRubReysbH7bNOpt5Wr3UI33qr01c3b2Fg5D5fJmYlFX_3WfvLxcD8dPYHJy-N4NJwAlRe4BRQZalDJEOMl4VgyVTIjGcNUEsV4RhVRpcQZozov8hIaXXJFuDQlIohDgvvJTecbL_a10qERM7fydRwpMowoLLKigFuqknMtbG1c46Va2KDEsGBZfCjBxXEKRQLBjRc4QFW61l7OXa2Njcd7rv_id_wHB_i4Sr2w6uCA_wl2JtzuCSLT6HVTyVUIYvz-tm_-J7vjm3Ws8i4Er41Y-pgV3woExU8GRZdBETMoNhkUbRThThQiXFfabz_wiOob6GLYmw</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Shirokov, N. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200323</creationdate><title>A Note on Approximation by Trigonometric Polynomials</title><author>Shirokov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463y-71f7f1d8189d593a8cd8fa8837a5c8927c5cda3287e464d0fed9c59afd1519053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirokov, N. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirokov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Approximation by Trigonometric Polynomials</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-03-23</date><risdate>2020</risdate><volume>243</volume><issue>6</issue><spage>981</spage><epage>984</epage><pages>981-984</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Let E = ∪ k = 1 n a k b k ⊂ ℝ ; if n &gt; 1, then we assume that the segments [ a k ,  b k ] are pairwise disjoint. Assume that the following property holds: E  ∩ ( E  + 2π ν ) = ∅, ν  ∈  ℤ , ν  ≠ 0. Denote by H ω  +  r ( E ) the space of functions f defined on E such that | f ( r ) ( x 2 ) −  f ( r ) ( x 1 )| ≤  c f ω (| x 2  −  x 1 |), x 1 , x 2  ∈  E , f (0)  ≡  f . Assume that a modulus of continuity ω satisfies the condition ∫ 0 x ω t t dt + x ∫ x ∞ ω t t 2 dt ≤ cω x . We find a constructive description of the space H ω  +  r ( E ) in terms of the rate of nonuniform approximation of a function f  ∈  H ω  +  r ( E ) by trigonometric polynomials if E and ω satisfy the above conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04598-y</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.243 (6), p.981-984
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2317062660
source Springer Link
subjects Approximation
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
title A Note on Approximation by Trigonometric Polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Approximation%20by%20Trigonometric%20Polynomials&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shirokov,%20N.%20A.&rft.date=2020-03-23&rft.volume=243&rft.issue=6&rft.spage=981&rft.epage=984&rft.pages=981-984&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04598-y&rft_dat=%3Cgale_proqu%3EA615361060%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463y-71f7f1d8189d593a8cd8fa8837a5c8927c5cda3287e464d0fed9c59afd1519053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317062660&rft_id=info:pmid/&rft_galeid=A615361060&rfr_iscdi=true