Loading…
Low Rank Methods of Approximation in an Electromagnetic Problem
In this article authors present a new method to construct low-rank approximations of dense huge-size matrices. The method develops mosaic-skeleton method and belongs to kernel-independent methods. In distinction from a mosaic-skeleton method, the new one utilizes the hierarchical structure of matrix...
Saved in:
Published in: | Lobachevskii journal of mathematics 2019-11, Vol.40 (11), p.1771-1780 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article authors present a new method to construct low-rank approximations of dense huge-size matrices. The method develops mosaic-skeleton method and belongs to kernel-independent methods. In distinction from a mosaic-skeleton method, the new one utilizes the hierarchical structure of matrix not only to define matrix block structure but also to calculate factors of low-rank matrix representation. The new method was applied to numerical calculation of boundary integral equations that appear from 3D problem of scattering monochromatic electromagnetic wave by ideal-conducting bodies. The solution of model problem is presented as an example of method evaluation. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080219110064 |