Loading…

Quantification of common aminopolycarboxylic acids in trench leachate from the Low Level Waste Repository

The aminopolycarboxylic acids (APCAs), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) and nitrilotriacetic acid (NTA), are used as decontamination agents throughout the nuclear industry; therefore, APCAs are often found in radioactive waste. Limits of acceptance on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radioanalytical and nuclear chemistry 2019-12, Vol.322 (3), p.1915-1929
Main Authors: O’Hanlon, James A., Chapman, Robert D., Taylor, Frank, Denecke, Melissa A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aminopolycarboxylic acids (APCAs), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) and nitrilotriacetic acid (NTA), are used as decontamination agents throughout the nuclear industry; therefore, APCAs are often found in radioactive waste. Limits of acceptance on APCAs are imposed on wastes consigned to the Low Level Waste Repository (LLWR) because, when present in the waste, the ligands have the potential to mobilise otherwise surface-bound or solid radionuclides, making them available for transport to groundwater and ultimately to the bio-sphere. A selective and sensitive methodology to detect and quantify these ligands in a range of complex matrices is advantageous in supporting waste acceptance processes. A reversed-phase high-performance liquid chromatography (HPLC) procedure has been applied for quantification of EDTA, DTPA and NTA in their Fe(III)-complex form. Method validation results show linearity ( r 2  > 0.999), precision (intra/inter-day %RSD ≤ 10%), accuracy (recovery = 100 ± 3%), sensitivity (minimum limits of detection = 0.31, 0.38 and 4.3 μM for EDTA, DTPA and NTA, respectively) and selectivity (simultaneous determination of the three APCA complexes achieved with baseline resolution) for Fe(III)-APCAs in aqueous solution. Chromatographic peak overlap is observed for samples containing Fe(III)- and Co(III)-EDTA; two deconvolution methods (2D least-squares fitting vs. PARAFAC) were applied to resolve the peaks and the performances compared. The optimised HPLC method was applied to trench leachate samples from the LLWR site. EDTA was detected with 0.4 μM 
ISSN:0236-5731
1588-2780
DOI:10.1007/s10967-019-06895-x