Loading…
Theory of Multidimensional Delsarte–Lions Transmutation Operators. II
The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory...
Saved in:
Published in: | Ukrainian mathematical journal 2019-11, Vol.71 (6), p.921-955 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory and special Berezansky-type congruence properties of the Delsarte transmutation operators is established. Some applications to multidimensional differential operators are presented, including the three-dimensional Laplace operator, the two-dimensional classical Dirac operator, and its multidimensional affine extension associated with self-dual Yang–Mills equations. The soliton solutions are discussed for a certain class of dynamical systems. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-019-01689-6 |