Loading…

Theory of Multidimensional Delsarte–Lions Transmutation Operators. II

The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian mathematical journal 2019-11, Vol.71 (6), p.921-955
Main Authors: Samoilenko, A. M., Prykarpatsky, Ya. A., Blackmore, D., Prykarpatsky, A. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory and special Berezansky-type congruence properties of the Delsarte transmutation operators is established. Some applications to multidimensional differential operators are presented, including the three-dimensional Laplace operator, the two-dimensional classical Dirac operator, and its multidimensional affine extension associated with self-dual Yang–Mills equations. The soliton solutions are discussed for a certain class of dynamical systems.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-019-01689-6