Loading…
Atypical Behavior of Collective Modes in Two-Dimensional Fermi Liquids
Using the Landau kinetic equation to study the non-equilibrium behavior of interacting Fermi systems is one of the crowning achievements of Landau's Fermi liquid theory. While thorough study of transport modes has been done for standard three-dimensional Fermi liquids, an equally in-depth analy...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using the Landau kinetic equation to study the non-equilibrium behavior of interacting Fermi systems is one of the crowning achievements of Landau's Fermi liquid theory. While thorough study of transport modes has been done for standard three-dimensional Fermi liquids, an equally in-depth analysis for two dimensional Fermi liquids is lacking. In applying the Landau kinetic equation (LKE) to a two-dimensional Fermi liquid, we obtain unconventional behavior of the zero sound mode \(c_0\). As a function of the usual dimensionless parameter \(s=\omega/qv_F\), we find two peculiar results: First, for \(|s|>1\) we see the propagation of an undamped mode for weakly interacting systems. This differs from the three dimensional case where an undamped mode only propagates for repulsive interactions and the mode experiences Landau damping for any arbitrary attractive interaction. Second, we find that regardless of interaction strength, a propagating mode is forbidden for \(|s| |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1912.02699 |