Loading…
Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes
Classifying land use/land cover (LULC) with sufficient accuracy in heterogeneous landscapes is challenging using only satellite imagery. To improve classification accuracy inclusion of features from auxiliary geospatial datasets in classification models is applied since 1980s. However, the method is...
Saved in:
Published in: | Remote sensing of environment 2019-11, Vol.233, p.111354, Article 111354 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classifying land use/land cover (LULC) with sufficient accuracy in heterogeneous landscapes is challenging using only satellite imagery. To improve classification accuracy inclusion of features from auxiliary geospatial datasets in classification models is applied since 1980s. However, the method is mostly limited to pixel-based classifications, and the coverage, accuracy and resolution of free and open-access auxiliary datasets have been poor until recent years.
We evaluated how recent global coverage open-access geospatial datasets improve object-based LULC classification accuracy compared to using only spectral and texture features from satellite images. We applied feature sets topography, population, soil, canopy cover, distance to watercourses and spectral-temporal metrics from Landsat-8 time series on the southern foothills and savanna of Mt. Kilimanjaro, Tanzania, where the landscape is characterized by heterogeneous and fragmented mosaic of disturbed savanna vegetation, croplands, and settlements.
The classification was based on image objects (groups of spectrally similar pixels) derived from segmentation of four Formosat-2 scenes with 8 m spatial resolution using 1370 ground reference points for training, validation, and for defining 17 LULC classes. We built six Random Forest classification models with different sets of object features in each. The baseline model having only spectral and texture features was compared with five other models supplemented with auxiliary features.
Inclusion of auxiliary features significantly improved classification overall accuracy (OA). The baseline model gave a median OA of 60.7%, but auxiliary features in other models increased median OA between 6.1 and 16.5 percentage points. The best OA was achieved with a model including all features of which elevation was the most important auxiliary feature followed by Enhanced Vegetation Index temporal range and slope degree.
Applying object-based classification to geospatial information on topography, soil, settlement patterns and vegetation phenology, the discriminatory potential of challenging LULC classes can be significantly improved. We demonstrated this for the first time, and the technique shows good potential for improving LULC mapping across a multitude of fragmented landscapes worldwide.
•Auxiliary open datasets were evaluated for improving object-based land cover mapping.•Six random forest models with and without auxiliary features were compared.•Including auxil |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2019.111354 |