Loading…

The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load

Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in control...

Full description

Saved in:
Bibliographic Details
Main Authors: Trihatmojo, Ahmad Arbi, Yuvenda, Dori, Sudarmanta, Bambang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5138286