Loading…
Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil
This study addressed the development of a pilot plant for pyrolysis of scrap tires to obtain carbon black and other byproducts. The work was motivated by the goal of contributing to the development and dissemination of knowledge about existing technologies that allow modern economies to transform wa...
Saved in:
Published in: | Sustainability 2019-04, Vol.11 (7), p.2076 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study addressed the development of a pilot plant for pyrolysis of scrap tires to obtain carbon black and other byproducts. The work was motivated by the goal of contributing to the development and dissemination of knowledge about existing technologies that allow modern economies to transform waste into valuable products, by documenting and discussing an empirical application in Brazil. Thispaper describes the development of a market for steel scrap, pyrolytic oil and carbon black products obtained from a vacuum pyrolysis process. The research work was conducted in Brazil, and was guided by the twofold purpose of reducing the environmental impacts, while gaining economical sustainability. Modern economies increasingly need to devise strategies to address energy generation while preserving natural ecosystems. These strategies include leveraging the use of renewable energy sources. Acknowledging that scrap tires hold an enormous potential as a sustainable energy option, this study aimed to contribute to the development and maturity of eco-friendly processing approaches to realize its full potential. The work involved a preliminary phase concerned with the operation of vacuum pyrolysis of scrap tires at a laboratorial scale, followed by the design of the pilot plant that operated for 10 years, at the time of the study, with a 100 kg/h batch flow. Results show that the yield of the pyrolysis process was 41% pyrolytic oil, 38% carbon black, 12% gas, and 8.9% steel scrap, with a calorific value of 36 MJ/kg per tire. The carbon black was composed of 90% carbon, and the pyrolytic oil was composed of 66% gasoline and 33% other oils, which have higher quality and can be commercialized with a potential profit over 3 million dollars/year. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su11072076 |