Loading…

An orthogonality relation for a class of problems with high-order boundary conditions; applications in sound-structure interaction

There are numerous interesting physical problems, in the fields of elasticity, acoustics and electromagnetism etc., involving the propagation of waves in ducts or pipes. Often the problems consist of pipes or ducts with abrupt changes of material properties or geometry. For example, in car silencer...

Full description

Saved in:
Bibliographic Details
Published in:Quarterly journal of mechanics and applied mathematics 1999-05, Vol.52 (2), p.161-181
Main Authors: Lawrie, JB, Abrahams, ID
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There are numerous interesting physical problems, in the fields of elasticity, acoustics and electromagnetism etc., involving the propagation of waves in ducts or pipes. Often the problems consist of pipes or ducts with abrupt changes of material properties or geometry. For example, in car silencer design, where there is a sudden change in cross-sectional area, or when the bounding wall is lagged. As the wavenumber spectrum in such problems is usually discrete, the wavefield is representable by a superposition of travelling or evanescent wave modes in each region of constant duct properties. The solution to the reflection or transmission of waves in ducts is therefore most frequently obtained by mode-matching across the interface at the discontinuities in duct properties. This is easy to do if the eigenfunctions in each region form a complete orthogonal set of basis functions; therefore, orthogonality relations allow the eigenfunction coefficients to be determined by solving a simple system of linear algebraic equations. The objective of this paper is to examine a class of problems in which the boundary conditions at the duct walls are not of Dirichlet, Neumann or of impedance type, but involve second or higher derivatives of the dependent variable. Such wall conditions are found in models of fluid-structural interaction, for example, membrane or plate boundaries, and in electromagnetic wave propagation. In these models the eigenfunctions are not orthogonal, and also extra edge conditions, imposed at the points of discontinuity, must be included when mode matching. This article presents a new orthogonality relation, involving eigenfunctions and their derivatives, for the general class of problems involving a scalar wave equation and high-order boundary conditions. It also discusses the procedure for incorporating the necessary edge conditions. Via two specific examples from structural acoustics, both of which have exact solutions obtainable by other techniques, it is shown that the orthogonality relation allows mode matching to follow through in the same manner as for simpler boundary conditions. That is, it yields coupled algebraic systems for the eigenfunction expansions which are easily solvable, and by which means more complicated cases, such as that illustrated in Fig. 1, are tractable.
ISSN:0033-5614
1464-3855
DOI:10.1093/qjmam/52.2.161