Loading…

Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process

The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the no...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2020-04, Vol.67 (4), p.2885-2893
Main Authors: Wang, Bing-Chuan, Li, Han-Xiong, Yang, Hai-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2914637