Loading…
Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process
The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the no...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2020-04, Vol.67 (4), p.2885-2893 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973 |
container_end_page | 2893 |
container_issue | 4 |
container_start_page | 2885 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Wang, Bing-Chuan Li, Han-Xiong Yang, Hai-Dong |
description | The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method. |
doi_str_mv | 10.1109/TIE.2019.2914637 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2325186315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8709973</ieee_id><sourcerecordid>2325186315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc-dL0rTJ0Y2pg4mC81zS9EU72qYm3WH_vZkbnt6D3_e99_ERckthRimoh81qOWNA1YwpmuW8OCMTKkSRKpXJczIBVsgUIMsvyVUIWwCaCSomBD8GPTa6TRbOe2zj7vp0rgPWyao3Hjvsx0jXqH3f9F-JdT75s7gRu8H5yF5dje2BOZvM9Tii3yebb_RdZO_eGQzhmlxY3Qa8Oc0p-XxabhYv6frtebV4XKcmph7TCpjhthIMMctBAuTGatSgTBVnzUwtq1pZrI1SRSVkIaySWnIFWQ1SFXxK7o93B-9-dhjGcut2vo8vS8aZoDLnVEQVHFXGuxA82nLwTaf9vqRQHsosY5nloczyVGa03B0tDSL-y2UBMQjnv-xmcgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325186315</pqid></control><display><type>article</type><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</creator><creatorcontrib>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</creatorcontrib><description>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2914637</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Battery thermal process ; Computer simulation ; Correlation ; forgetting factor ; Heat exchange ; Heating systems ; incremental learning ; Integrated circuit modeling ; Learning ; Lithium-ion batteries ; Model accuracy ; Modelling ; Neural networks ; Power management ; Radial basis function ; Rechargeable batteries ; spatial correlation ; Spatiotemporal phenomena ; Temperature effects ; time/space separation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-04, Vol.67 (4), p.2885-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</citedby><cites>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</cites><orcidid>0000-0002-1133-3017 ; 0000-0002-0234-2843 ; 0000-0002-0707-5940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8709973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Wang, Bing-Chuan</creatorcontrib><creatorcontrib>Li, Han-Xiong</creatorcontrib><creatorcontrib>Yang, Hai-Dong</creatorcontrib><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</description><subject>Battery thermal process</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>forgetting factor</subject><subject>Heat exchange</subject><subject>Heating systems</subject><subject>incremental learning</subject><subject>Integrated circuit modeling</subject><subject>Learning</subject><subject>Lithium-ion batteries</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Power management</subject><subject>Radial basis function</subject><subject>Rechargeable batteries</subject><subject>spatial correlation</subject><subject>Spatiotemporal phenomena</subject><subject>Temperature effects</subject><subject>time/space separation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc-dL0rTJ0Y2pg4mC81zS9EU72qYm3WH_vZkbnt6D3_e99_ERckthRimoh81qOWNA1YwpmuW8OCMTKkSRKpXJczIBVsgUIMsvyVUIWwCaCSomBD8GPTa6TRbOe2zj7vp0rgPWyao3Hjvsx0jXqH3f9F-JdT75s7gRu8H5yF5dje2BOZvM9Tii3yebb_RdZO_eGQzhmlxY3Qa8Oc0p-XxabhYv6frtebV4XKcmph7TCpjhthIMMctBAuTGatSgTBVnzUwtq1pZrI1SRSVkIaySWnIFWQ1SFXxK7o93B-9-dhjGcut2vo8vS8aZoDLnVEQVHFXGuxA82nLwTaf9vqRQHsosY5nloczyVGa03B0tDSL-y2UBMQjnv-xmcgc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Bing-Chuan</creator><creator>Li, Han-Xiong</creator><creator>Yang, Hai-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1133-3017</orcidid><orcidid>https://orcid.org/0000-0002-0234-2843</orcidid><orcidid>https://orcid.org/0000-0002-0707-5940</orcidid></search><sort><creationdate>20200401</creationdate><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><author>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Battery thermal process</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>forgetting factor</topic><topic>Heat exchange</topic><topic>Heating systems</topic><topic>incremental learning</topic><topic>Integrated circuit modeling</topic><topic>Learning</topic><topic>Lithium-ion batteries</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Power management</topic><topic>Radial basis function</topic><topic>Rechargeable batteries</topic><topic>spatial correlation</topic><topic>Spatiotemporal phenomena</topic><topic>Temperature effects</topic><topic>time/space separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing-Chuan</creatorcontrib><creatorcontrib>Li, Han-Xiong</creatorcontrib><creatorcontrib>Yang, Hai-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing-Chuan</au><au>Li, Han-Xiong</au><au>Yang, Hai-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>67</volume><issue>4</issue><spage>2885</spage><epage>2893</epage><pages>2885-2893</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2914637</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1133-3017</orcidid><orcidid>https://orcid.org/0000-0002-0234-2843</orcidid><orcidid>https://orcid.org/0000-0002-0707-5940</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-04, Vol.67 (4), p.2885-2893 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2325186315 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Battery thermal process Computer simulation Correlation forgetting factor Heat exchange Heating systems incremental learning Integrated circuit modeling Learning Lithium-ion batteries Model accuracy Modelling Neural networks Power management Radial basis function Rechargeable batteries spatial correlation Spatiotemporal phenomena Temperature effects time/space separation |
title | Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Correlation-Based%20Incremental%20Learning%20for%20Spatiotemporal%20Modeling%20of%20Battery%20Thermal%20Process&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Bing-Chuan&rft.date=2020-04-01&rft.volume=67&rft.issue=4&rft.spage=2885&rft.epage=2893&rft.pages=2885-2893&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2914637&rft_dat=%3Cproquest_ieee_%3E2325186315%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325186315&rft_id=info:pmid/&rft_ieee_id=8709973&rfr_iscdi=true |