Loading…

Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process

The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the no...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2020-04, Vol.67 (4), p.2885-2893
Main Authors: Wang, Bing-Chuan, Li, Han-Xiong, Yang, Hai-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973
cites cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973
container_end_page 2893
container_issue 4
container_start_page 2885
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Wang, Bing-Chuan
Li, Han-Xiong
Yang, Hai-Dong
description The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.
doi_str_mv 10.1109/TIE.2019.2914637
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2325186315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8709973</ieee_id><sourcerecordid>2325186315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc-dL0rTJ0Y2pg4mC81zS9EU72qYm3WH_vZkbnt6D3_e99_ERckthRimoh81qOWNA1YwpmuW8OCMTKkSRKpXJczIBVsgUIMsvyVUIWwCaCSomBD8GPTa6TRbOe2zj7vp0rgPWyao3Hjvsx0jXqH3f9F-JdT75s7gRu8H5yF5dje2BOZvM9Tii3yebb_RdZO_eGQzhmlxY3Qa8Oc0p-XxabhYv6frtebV4XKcmph7TCpjhthIMMctBAuTGatSgTBVnzUwtq1pZrI1SRSVkIaySWnIFWQ1SFXxK7o93B-9-dhjGcut2vo8vS8aZoDLnVEQVHFXGuxA82nLwTaf9vqRQHsosY5nloczyVGa03B0tDSL-y2UBMQjnv-xmcgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325186315</pqid></control><display><type>article</type><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</creator><creatorcontrib>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</creatorcontrib><description>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2914637</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Battery thermal process ; Computer simulation ; Correlation ; forgetting factor ; Heat exchange ; Heating systems ; incremental learning ; Integrated circuit modeling ; Learning ; Lithium-ion batteries ; Model accuracy ; Modelling ; Neural networks ; Power management ; Radial basis function ; Rechargeable batteries ; spatial correlation ; Spatiotemporal phenomena ; Temperature effects ; time/space separation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-04, Vol.67 (4), p.2885-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</citedby><cites>FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</cites><orcidid>0000-0002-1133-3017 ; 0000-0002-0234-2843 ; 0000-0002-0707-5940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8709973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Wang, Bing-Chuan</creatorcontrib><creatorcontrib>Li, Han-Xiong</creatorcontrib><creatorcontrib>Yang, Hai-Dong</creatorcontrib><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</description><subject>Battery thermal process</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>forgetting factor</subject><subject>Heat exchange</subject><subject>Heating systems</subject><subject>incremental learning</subject><subject>Integrated circuit modeling</subject><subject>Learning</subject><subject>Lithium-ion batteries</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Power management</subject><subject>Radial basis function</subject><subject>Rechargeable batteries</subject><subject>spatial correlation</subject><subject>Spatiotemporal phenomena</subject><subject>Temperature effects</subject><subject>time/space separation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc-dL0rTJ0Y2pg4mC81zS9EU72qYm3WH_vZkbnt6D3_e99_ERckthRimoh81qOWNA1YwpmuW8OCMTKkSRKpXJczIBVsgUIMsvyVUIWwCaCSomBD8GPTa6TRbOe2zj7vp0rgPWyao3Hjvsx0jXqH3f9F-JdT75s7gRu8H5yF5dje2BOZvM9Tii3yebb_RdZO_eGQzhmlxY3Qa8Oc0p-XxabhYv6frtebV4XKcmph7TCpjhthIMMctBAuTGatSgTBVnzUwtq1pZrI1SRSVkIaySWnIFWQ1SFXxK7o93B-9-dhjGcut2vo8vS8aZoDLnVEQVHFXGuxA82nLwTaf9vqRQHsosY5nloczyVGa03B0tDSL-y2UBMQjnv-xmcgc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Bing-Chuan</creator><creator>Li, Han-Xiong</creator><creator>Yang, Hai-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1133-3017</orcidid><orcidid>https://orcid.org/0000-0002-0234-2843</orcidid><orcidid>https://orcid.org/0000-0002-0707-5940</orcidid></search><sort><creationdate>20200401</creationdate><title>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</title><author>Wang, Bing-Chuan ; Li, Han-Xiong ; Yang, Hai-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Battery thermal process</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>forgetting factor</topic><topic>Heat exchange</topic><topic>Heating systems</topic><topic>incremental learning</topic><topic>Integrated circuit modeling</topic><topic>Learning</topic><topic>Lithium-ion batteries</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Power management</topic><topic>Radial basis function</topic><topic>Rechargeable batteries</topic><topic>spatial correlation</topic><topic>Spatiotemporal phenomena</topic><topic>Temperature effects</topic><topic>time/space separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing-Chuan</creatorcontrib><creatorcontrib>Li, Han-Xiong</creatorcontrib><creatorcontrib>Yang, Hai-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing-Chuan</au><au>Li, Han-Xiong</au><au>Yang, Hai-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>67</volume><issue>4</issue><spage>2885</spage><epage>2893</epage><pages>2885-2893</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The thermal effect has a significant impact on the performance of a lithium-ion battery. Thus, modeling the thermal process, which always involves unknown boundary heat exchange, is significant to battery management. Two critical issues should be addressed for the thermal process modeling: 1) the nominal model, which is constructed offline, can be updated efficiently to compensate for any online disturbances; and 2) the influence of previous and recent spatiotemporal dynamics may be varying and should be handled properly. Bearing these in mind, in this paper, a spatial correlation-based incremental learning technique is designed for spatiotemporal modeling. First, the incremental learning technique is developed to update the dominant spatial basis functions of the nominal model, which is constructed by a time/space separation-based method. Then, a forgetting factor is incorporated into the incremental learning technique to handle time-varying dynamics. Additionally, the popular approximator, that is, the radial basis function neural network, is utilized to identify the low-dimensional temporal model. Simulations and experiments on a pouch type battery with boundary heat exchange have demonstrated the accuracy and efficiency of the proposed modeling method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2914637</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1133-3017</orcidid><orcidid>https://orcid.org/0000-0002-0234-2843</orcidid><orcidid>https://orcid.org/0000-0002-0707-5940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-04, Vol.67 (4), p.2885-2893
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2325186315
source IEEE Electronic Library (IEL) Journals
subjects Battery thermal process
Computer simulation
Correlation
forgetting factor
Heat exchange
Heating systems
incremental learning
Integrated circuit modeling
Learning
Lithium-ion batteries
Model accuracy
Modelling
Neural networks
Power management
Radial basis function
Rechargeable batteries
spatial correlation
Spatiotemporal phenomena
Temperature effects
time/space separation
title Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Correlation-Based%20Incremental%20Learning%20for%20Spatiotemporal%20Modeling%20of%20Battery%20Thermal%20Process&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Bing-Chuan&rft.date=2020-04-01&rft.volume=67&rft.issue=4&rft.spage=2885&rft.epage=2893&rft.pages=2885-2893&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2914637&rft_dat=%3Cproquest_ieee_%3E2325186315%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b02c3fb52ee4608006cfaea09cbfaed2cd8bd9fedc997b5875f98a83904d08973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325186315&rft_id=info:pmid/&rft_ieee_id=8709973&rfr_iscdi=true