Loading…
Comparison principle for elliptic equations with mixed singular nonlinearities
We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by \begin{equation*} \begin{cases} \displaystyle -\Delta_p u= \frac{f}{u^\gamma} + g u^q & \mbox{in \(\Omega\),} \\ u = 0 & \mbox{on \(\partial\Omega\),} \end{cases} \end{equation*} wher...
Saved in:
Published in: | arXiv.org 2019-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by \begin{equation*} \begin{cases} \displaystyle -\Delta_p u= \frac{f}{u^\gamma} + g u^q & \mbox{in \(\Omega\),} \\ u = 0 & \mbox{on \(\partial\Omega\),} \end{cases} \end{equation*} where \(\Omega\) is an open bounded subset of \(\mathbb{R}^N\), \(\Delta_p u:=\text{div}(|\nabla u|^{p-2}\nabla u)\) is the usual \(p\)-Laplacian operator, \(\gamma\geq 0\) and \(0\leq q\leq p-1\); \(f\) and \(g\) are nonnegative functions belonging to suitable Lebesgue spaces. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1912.08261 |