Loading…

Role of the interplay between spinodal decomposition and crystal growth in the morphological evolution of crystalline bulk heterojunctions

The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lif...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-02
Main Authors: Ronsin, Olivier J J, Harting, Jens
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions.
ISSN:2331-8422
DOI:10.48550/arxiv.1912.09129