Loading…
Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is ( p - 1 ) -superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation...
Saved in:
Published in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020, Vol.114 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is
(
p
-
1
)
-superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter
λ
>
0
varies. Also we prove the existence of a minimal positive solution
u
λ
∗
and determine the monotonicity and continuity properties of the map
λ
→
u
λ
∗
. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-019-00779-1 |