Loading…

Product Composition, Structure, and Bioavailability

Bioavailability is the fraction of an administered dose that reaches the systemic circulation. Health claims for functional foods can only be made if the ingredient reaches the target site to trigger the physiological action, hence substantiation requires good bioavailability. This is also expressed...

Full description

Saved in:
Bibliographic Details
Published in:Food biophysics 2008-06, Vol.3 (2), p.207-212
Main Authors: Duchateau, Guus S. M. J. E, Klaffke, Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioavailability is the fraction of an administered dose that reaches the systemic circulation. Health claims for functional foods can only be made if the ingredient reaches the target site to trigger the physiological action, hence substantiation requires good bioavailability. This is also expressed in the European Regulation on Health Claims. Albeit not new at all, a full understanding of the controlling factors for bioavailability in foods is still lacking. Foods are complex systems and can be part of a meal. The impact of product composition and the interplay with human physiology during fed or fasted state has to be understood: a functional ingredient has to be released from the product matrix into a molecularly dispersed state, either in classic solution or in micellar state. Only in the dispersed state can actives cross the gut wall. Release and dissolution are depending on both molecular physicochemical properties of the active and those of the entire product. More complex is the uptake of hydrophobic, poorly water-soluble substrates. As they do not dissolve in the aqueous intestinal environment, presence of fat, release of bile, enzymes, and gut motility to induce lipolysis are required. Surface-active bile salts together with lipolysis products create micelles containing the hydrophobic active. This imposes limitations on the formulation space for hydrophobic compounds. Finally, many ingredients are not fit for straightforward use as they compromise the stability or sensory characteristics of the product. Compartmentalization strategies, like encapsulation, may offer solutions to the problem; it should, however, not be forgotten that encapsulates themselves may effect bioavailability through the changed dynamics of the uptake processes. To explore and build a better understanding of these factors, a range of models are available and used in product formulation and claim substantiation. A structured approach and the selection of proper models will help to improve functional food formulations in the future.
ISSN:1557-1858
1557-1866
DOI:10.1007/s11483-008-9076-5