Loading…
Covariant canonical quantization
We present a manifestly covariant quantization procedure based on the de Donder–Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental le...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2006-09, Vol.47 (3), p.861-872 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a manifestly covariant quantization procedure based on the de Donder–Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein–Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a “first” or pre-quantization within the framework of conventional QFT. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s2006-02595-5 |