Loading…
C-envelopes of semicrossed products by lattice ordered abelian semigroups
A semicrossed product is a non-selfadjoint operator algebra encoding the action of a semigroup on an operator or C*-algebra. We prove that, when the positive cone of a discrete lattice ordered abelian group acts on a C*-algebra, the C*-envelope of the associated semicrossed product is a full corner...
Saved in:
Published in: | arXiv.org 2021-02 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A semicrossed product is a non-selfadjoint operator algebra encoding the action of a semigroup on an operator or C*-algebra. We prove that, when the positive cone of a discrete lattice ordered abelian group acts on a C*-algebra, the C*-envelope of the associated semicrossed product is a full corner of a crossed product by the whole group. By constructing a C*-cover that itself is a full corner of a crossed product, and computing the Shilov ideal, we obtain an explicit description of the C*-envelope. This generalizes a result of Davidson, Fuller, and Kakariadis from \(\mathbb{Z}_+^n\) to the class of all discrete lattice ordered abelian groups. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2001.07294 |