Loading…

Fabrication and characterization of conductive silk fibroin–gold nanocomposite films

This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural bi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.249-264
Main Authors: Ranjana, R., Parushuram, N., Harisha, K. S., Asha, S., Narayana, B., Mahendra, M., Sangappa, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3
cites cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3
container_end_page 264
container_issue 1
container_start_page 249
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Ranjana, R.
Parushuram, N.
Harisha, K. S.
Asha, S.
Narayana, B.
Mahendra, M.
Sangappa, Y.
description This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E g ) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10 −9 to 7.12 × 10 −9 S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.
doi_str_mv 10.1007/s10854-019-02485-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343875203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343875203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8k2mSJaooIFViA4id5b8Ul9QudoIEK-7ADTkJhiCxYzXSzHtvZj6Ejik5pYRUZ4mSGkpMaIMJK2vAsIMmFCqOy5o97KIJaaDCJTC2jw5SWhNCZiWvJ-h-IVV0WvYu-EJ6U-hHGaXubXRvYzO0hQ7eDLp3L7ZIrnsqWqdicP7z_WMVOlN46YMOm21Irrd52G3SIdprZZfs0W-dorvFxe38Ci9vLq_n50usOW163Fg5A8Nqy6kEqsHMVL5eU85pDUpVVGurmKktsEaVhkJrSVWZRoHKk9LwKToZc7cxPA829WIdhujzSsF4frACRnhWsVGlY0gp2lZso9vI-CooEd_8xMhPZH7ih5-AbOKjKWWxX9n4F_2P6wsNOnYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343875203</pqid></control><display><type>article</type><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><source>Springer Nature</source><creator>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</creator><creatorcontrib>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</creatorcontrib><description>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E g ) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10 −9 to 7.12 × 10 −9 S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02485-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Biopolymers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron microscopy ; Energy gap ; Gold ; Materials Science ; Microscopy ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Photomicrographs ; Silk fibroin ; Spectrum analysis</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.249-264</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</citedby><cites>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</cites><orcidid>0000-0001-6633-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranjana, R.</creatorcontrib><creatorcontrib>Parushuram, N.</creatorcontrib><creatorcontrib>Harisha, K. S.</creatorcontrib><creatorcontrib>Asha, S.</creatorcontrib><creatorcontrib>Narayana, B.</creatorcontrib><creatorcontrib>Mahendra, M.</creatorcontrib><creatorcontrib>Sangappa, Y.</creatorcontrib><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E g ) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10 −9 to 7.12 × 10 −9 S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</description><subject>Absorption spectra</subject><subject>Biopolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron microscopy</subject><subject>Energy gap</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Photomicrographs</subject><subject>Silk fibroin</subject><subject>Spectrum analysis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8k2mSJaooIFViA4id5b8Ul9QudoIEK-7ADTkJhiCxYzXSzHtvZj6Ejik5pYRUZ4mSGkpMaIMJK2vAsIMmFCqOy5o97KIJaaDCJTC2jw5SWhNCZiWvJ-h-IVV0WvYu-EJ6U-hHGaXubXRvYzO0hQ7eDLp3L7ZIrnsqWqdicP7z_WMVOlN46YMOm21Irrd52G3SIdprZZfs0W-dorvFxe38Ci9vLq_n50usOW163Fg5A8Nqy6kEqsHMVL5eU85pDUpVVGurmKktsEaVhkJrSVWZRoHKk9LwKToZc7cxPA829WIdhujzSsF4frACRnhWsVGlY0gp2lZso9vI-CooEd_8xMhPZH7ih5-AbOKjKWWxX9n4F_2P6wsNOnYF</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ranjana, R.</creator><creator>Parushuram, N.</creator><creator>Harisha, K. S.</creator><creator>Asha, S.</creator><creator>Narayana, B.</creator><creator>Mahendra, M.</creator><creator>Sangappa, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6633-9101</orcidid></search><sort><creationdate>2020</creationdate><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><author>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Biopolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron microscopy</topic><topic>Energy gap</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Photomicrographs</topic><topic>Silk fibroin</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjana, R.</creatorcontrib><creatorcontrib>Parushuram, N.</creatorcontrib><creatorcontrib>Harisha, K. S.</creatorcontrib><creatorcontrib>Asha, S.</creatorcontrib><creatorcontrib>Narayana, B.</creatorcontrib><creatorcontrib>Mahendra, M.</creatorcontrib><creatorcontrib>Sangappa, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjana, R.</au><au>Parushuram, N.</au><au>Harisha, K. S.</au><au>Asha, S.</au><au>Narayana, B.</au><au>Mahendra, M.</au><au>Sangappa, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>249</spage><epage>264</epage><pages>249-264</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E g ) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10 −9 to 7.12 × 10 −9 S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02485-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6633-9101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.249-264
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2343875203
source Springer Nature
subjects Absorption spectra
Biopolymers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electron microscopy
Energy gap
Gold
Materials Science
Microscopy
Nanocomposites
Nanoparticles
Optical and Electronic Materials
Photomicrographs
Silk fibroin
Spectrum analysis
title Fabrication and characterization of conductive silk fibroin–gold nanocomposite films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20conductive%20silk%20fibroin%E2%80%93gold%20nanocomposite%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ranjana,%20R.&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=249&rft.epage=264&rft.pages=249-264&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02485-5&rft_dat=%3Cproquest_cross%3E2343875203%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343875203&rft_id=info:pmid/&rfr_iscdi=true