Loading…
Fabrication and characterization of conductive silk fibroin–gold nanocomposite films
This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural bi...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.249-264 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3 |
container_end_page | 264 |
container_issue | 1 |
container_start_page | 249 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Ranjana, R. Parushuram, N. Harisha, K. S. Asha, S. Narayana, B. Mahendra, M. Sangappa, Y. |
description | This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu
III
Cl
4
·H
2
O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E
g
) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10
−9
to 7.12 × 10
−9
S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix. |
doi_str_mv | 10.1007/s10854-019-02485-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343875203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343875203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8k2mSJaooIFViA4id5b8Ul9QudoIEK-7ADTkJhiCxYzXSzHtvZj6Ejik5pYRUZ4mSGkpMaIMJK2vAsIMmFCqOy5o97KIJaaDCJTC2jw5SWhNCZiWvJ-h-IVV0WvYu-EJ6U-hHGaXubXRvYzO0hQ7eDLp3L7ZIrnsqWqdicP7z_WMVOlN46YMOm21Irrd52G3SIdprZZfs0W-dorvFxe38Ci9vLq_n50usOW163Fg5A8Nqy6kEqsHMVL5eU85pDUpVVGurmKktsEaVhkJrSVWZRoHKk9LwKToZc7cxPA829WIdhujzSsF4frACRnhWsVGlY0gp2lZso9vI-CooEd_8xMhPZH7ih5-AbOKjKWWxX9n4F_2P6wsNOnYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343875203</pqid></control><display><type>article</type><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><source>Springer Nature</source><creator>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</creator><creatorcontrib>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</creatorcontrib><description>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu
III
Cl
4
·H
2
O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E
g
) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10
−9
to 7.12 × 10
−9
S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02485-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Biopolymers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron microscopy ; Energy gap ; Gold ; Materials Science ; Microscopy ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Photomicrographs ; Silk fibroin ; Spectrum analysis</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.249-264</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</citedby><cites>FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</cites><orcidid>0000-0001-6633-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranjana, R.</creatorcontrib><creatorcontrib>Parushuram, N.</creatorcontrib><creatorcontrib>Harisha, K. S.</creatorcontrib><creatorcontrib>Asha, S.</creatorcontrib><creatorcontrib>Narayana, B.</creatorcontrib><creatorcontrib>Mahendra, M.</creatorcontrib><creatorcontrib>Sangappa, Y.</creatorcontrib><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu
III
Cl
4
·H
2
O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E
g
) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10
−9
to 7.12 × 10
−9
S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</description><subject>Absorption spectra</subject><subject>Biopolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron microscopy</subject><subject>Energy gap</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Photomicrographs</subject><subject>Silk fibroin</subject><subject>Spectrum analysis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8k2mSJaooIFViA4id5b8Ul9QudoIEK-7ADTkJhiCxYzXSzHtvZj6Ejik5pYRUZ4mSGkpMaIMJK2vAsIMmFCqOy5o97KIJaaDCJTC2jw5SWhNCZiWvJ-h-IVV0WvYu-EJ6U-hHGaXubXRvYzO0hQ7eDLp3L7ZIrnsqWqdicP7z_WMVOlN46YMOm21Irrd52G3SIdprZZfs0W-dorvFxe38Ci9vLq_n50usOW163Fg5A8Nqy6kEqsHMVL5eU85pDUpVVGurmKktsEaVhkJrSVWZRoHKk9LwKToZc7cxPA829WIdhujzSsF4frACRnhWsVGlY0gp2lZso9vI-CooEd_8xMhPZH7ih5-AbOKjKWWxX9n4F_2P6wsNOnYF</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ranjana, R.</creator><creator>Parushuram, N.</creator><creator>Harisha, K. S.</creator><creator>Asha, S.</creator><creator>Narayana, B.</creator><creator>Mahendra, M.</creator><creator>Sangappa, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6633-9101</orcidid></search><sort><creationdate>2020</creationdate><title>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</title><author>Ranjana, R. ; Parushuram, N. ; Harisha, K. S. ; Asha, S. ; Narayana, B. ; Mahendra, M. ; Sangappa, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Biopolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron microscopy</topic><topic>Energy gap</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Photomicrographs</topic><topic>Silk fibroin</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjana, R.</creatorcontrib><creatorcontrib>Parushuram, N.</creatorcontrib><creatorcontrib>Harisha, K. S.</creatorcontrib><creatorcontrib>Asha, S.</creatorcontrib><creatorcontrib>Narayana, B.</creatorcontrib><creatorcontrib>Mahendra, M.</creatorcontrib><creatorcontrib>Sangappa, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjana, R.</au><au>Parushuram, N.</au><au>Harisha, K. S.</au><au>Asha, S.</au><au>Narayana, B.</au><au>Mahendra, M.</au><au>Sangappa, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of conductive silk fibroin–gold nanocomposite films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>249</spage><epage>264</epage><pages>249-264</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu
III
Cl
4
·H
2
O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E
g
) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10
−9
to 7.12 × 10
−9
S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02485-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6633-9101</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.249-264 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2343875203 |
source | Springer Nature |
subjects | Absorption spectra Biopolymers Characterization and Evaluation of Materials Chemistry and Materials Science Electron microscopy Energy gap Gold Materials Science Microscopy Nanocomposites Nanoparticles Optical and Electronic Materials Photomicrographs Silk fibroin Spectrum analysis |
title | Fabrication and characterization of conductive silk fibroin–gold nanocomposite films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20conductive%20silk%20fibroin%E2%80%93gold%20nanocomposite%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ranjana,%20R.&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=249&rft.epage=264&rft.pages=249-264&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02485-5&rft_dat=%3Cproquest_cross%3E2343875203%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9ea65d28e31a51c5d6b248c133185bb71cceb2d8e529b4d15fe077d9b5bcce4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343875203&rft_id=info:pmid/&rfr_iscdi=true |