Loading…
Neural network based explicit MPC for chemical reactor control
In this paper, implementation of deep neural networks applied in process control is presented. In our approach, training of the neural network is based on model predictive control, which is popular for its ability to be tuned by the weighting matrices and for it respecting the system constraints. A...
Saved in:
Published in: | Acta Chimica Slovaca 2019-10, Vol.12 (2), p.218-223 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, implementation of deep neural networks applied in process control is presented. In our approach, training of the neural network is based on model predictive control, which is popular for its ability to be tuned by the weighting matrices and for it respecting the system constraints. A neural network that can approximate the MPC behavior by mimicking the control input trajectory while the constraints on states and control input remain unimpaired by the weighting matrices is introduced. This approach is demonstrated in a simulation case study involving a continuous stirred tank reactor where a multi-component chemical reaction takes place. |
---|---|
ISSN: | 1339-3065 1337-978X 1339-3065 |
DOI: | 10.2478/acs-2019-0030 |