Loading…

The Interface Between Fresh and Salt Groundwater in Horizontal Aquifers: The Dupuit–Forchheimer Approximation Revisited

We analyze the motion of a sharp interface between fresh and salt groundwater in horizontal, confined aquifers of infinite extend. The analysis is based on earlier results of De Josselin de Jong (Proc Euromech 143:75–82, 1981 ). Parameterizing the height of the interface along the horizontal base of...

Full description

Saved in:
Bibliographic Details
Published in:Transport in porous media 2017-04, Vol.117 (3), p.481-505
Main Authors: van Duijn, C. J., Schotting, R. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyze the motion of a sharp interface between fresh and salt groundwater in horizontal, confined aquifers of infinite extend. The analysis is based on earlier results of De Josselin de Jong (Proc Euromech 143:75–82, 1981 ). Parameterizing the height of the interface along the horizontal base of the aquifer and assuming the validity of the Dupuit–Forchheimer approximation in both the fresh and saltwater, he derived an approximate interface motion equation. This equation is a nonlinear doubly degenerate diffusion equation in terms of the height of the interface. In that paper, he also developed a stream function-based formulation for the dynamics of a two-fluid interface. By replacing the two fluids by one hypothetical fluid, with a distribution of vortices along the interface, the exact discharge field throughout the flow domain can be determined. Starting point for our analysis is the stream function formulation. We derive an exact integro-differential equation for the movement of the interface. We show that the pointwise differential terms are identical to the approximate Dupuit–Forchheimer interface motion equation as derived by De Josselin de Jong. We analyze (mathematical) properties of the additional integral term in the exact interface motion formulation to validate the approximate Dupuit–Forchheimer interface motion equation. We also consider the case of flat interfaces, and we study the behavior of the toe of the interface. In particular, we give a criterion for finite or infinite speed of propagation.
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-017-0843-y