Loading…
Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs
This work relates to improvement of magnetic and cryogenic energy preservation performances in an on-board high-temperature superconducting magnet system used in linear synchronous motors for ultrahigh speed maglevs. Since maglevs remove all the physical contacts to the ground, the wireless on-board...
Saved in:
Published in: | Energy (Oxford) 2020-01, Vol.190, p.116403, Article 116403 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work relates to improvement of magnetic and cryogenic energy preservation performances in an on-board high-temperature superconducting magnet system used in linear synchronous motors for ultrahigh speed maglevs. Since maglevs remove all the physical contacts to the ground, the wireless on-board feeding power is rather limited especially for superconducting subassemblies. And it has become one of the development bottlenecks. For the magnet system, realization of on-board feeding-power free is pivotal, which is regarding to two important energy conversions: electrical to magnetic energy by persistent-current mode of superconductivity, and latent heat to effective cooling (or cryogenic) energy by α-β phase transition of solid nitrogen (SN2) in the system. Improvements of the two energy conversions are the main work. Firstly, model and numerical approach of persistent-current mode are proposed, followed by simulation of SN2 cooling. Then performances of persistent-current mode and cryogenic energy preservation are reported. Energy conversion efficiency is also analyzed for a strategy to improve cooling performance. The strategy successfully extends cryogenic energy preservation time to 8.83 h and suppresses thermal non-uniformity to |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2019.116403 |